
University of Manchester

School of Computer Science
Project Report 2014

Using Machine Learning to Predict
Personal Expenditure

Author:
Pez Cuckow

Supervisor:
Dr Gavin Brown

Abstract

A complete understanding of personal finances is becoming increasingly important as the
average persons disposable income has decreased due to a changing financial climate.

The aim of this project is to build an application that makes it easier to manage a
users personal finances. This is split into two halves, accessing historical information in
an easy to understand way and using machine learning techniques to predict future fi-
nancial transactions. The security considerations of storing personal finance information
are also considered.

This begins with a review of the existing commercial personal finance applications
and the current techniques used to forecast time-boxed financial data, such as the value
of a stock on the stock market, before detailing the design and implementation of the
application.

Having completed the application, the performance of selected techniques is reviewed,
before discussing further research opportunities which could improve the applications ac-
curacy.

Project Title: Using Machine Learning to Predict Personal Expenditure
Author: Pez Cuckow
Degree: Computer Science with Business and Management
Supervisor: Dr Gavin Brown

Keywords: Markov Chain Models, Weighted Arithmetic Mean, Responsive Web Design, Web

System Security

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Aims and Objectives . 10

1.2.1 Statement Management . 10
1.2.2 Prediction . 10
1.2.3 Security . 10

1.3 Overview of Report . 10

2 Background 12
2.1 Statement Management . 12

2.1.1 Lloyds Money Manager . 12
2.1.2 Mint.com . 13
2.1.3 Mobile Apps . 14

2.2 Prediction . 14
2.3 Security . 16

2.3.1 Account Hijacking . 17
2.3.2 Password Security . 17
2.3.3 Database Storage . 18

3 Design 19
3.1 Statement Management . 19

3.1.1 Upload . 19
3.1.2 Named Entity Resolution . 21
3.1.3 Suggestions . 23

3.2 Prediction . 23
3.2.1 Markov Chain Models . 23
3.2.2 Weighted Arithmetic Mean . 24
3.2.3 Five Model System . 24
3.2.4 Confidence . 25

3.3 Security Considerations . 26
3.3.1 Account Hijacking . 26
3.3.2 Password Security . 27
3.3.3 Database Storage . 28

1

CONTENTS CONTENTS

3.3.4 Other . 29
3.4 Technical Design . 29
3.5 Language Choice . 29

3.5.1 Design Patterns . 30
3.5.2 Architecture . 31
3.5.3 Project Management . 32

4 Implementation 34
4.1 Key Libraries . 34

4.1.1 Server Side . 34
4.1.2 Client Side . 36

4.2 Statement Management . 37
4.2.1 Upload . 37
4.2.2 Named Entity Resolution . 38
4.2.3 Suggestion Wizard . 40

4.3 Prediction . 43
4.4 Security . 46

4.4.1 Account Hijacking . 46
4.4.2 Brute Force Attacks . 48

5 Results 51
5.1 System Walkthrough . 51

5.1.1 Statement Upload . 52
5.2 Suggestion Wizard . 54
5.3 Transaction Overview . 57
5.4 Viewing Statements . 57
5.5 Responsive Design . 61

6 Testing and Evaluation 63
6.1 During Development . 63

6.1.1 Acceptance Testing . 63
6.1.2 Unit Testing . 64

6.2 After Development . 64
6.2.1 Statement Management . 64
6.2.2 Prediction . 66
6.2.3 Security . 67

7 Conclusions 69
7.1 Limitations . 70
7.2 Further research . 70

7.2.1 Model Selection . 71
7.2.2 Alternative Forecasting Techniques 72
7.2.3 Learning the Scaling Parameters 72

2 of 96

CONTENTS CONTENTS

Appendix A Survey 82

Appendix B Hashing Test 83

Appendix C Database Schema 85

Appendix D External Libraries 87
D.1 Back End . 87
D.2 Front End . 87

Appendix E PHP Code 90

Appendix F Suggestion Wizard API 93

Appendix G Questionnaire 95

3 of 96

List of Figures

2.1 Spending Analysis by category on Lloyds Money Manager 13
2.2 Markov Chain Model of customer spending 15
2.3 SMA, WMA and EMA of the S&P500 . 16
2.4 Using weighted smoothing to predict a future value 16

3.1 Two transactions in QIF format . 20
3.2 Two transactions in OFX format . 20
3.3 Activity diagram for statement uploads 21
3.4 Overview of Mapping objects . 22
3.5 Overview of User Mappings . 22
3.6 Transition diagram for a monthly pay check 23
3.7 Transition diagram for a one off purchase 23
3.8 Weighted arithmetic mean . 24
3.9 The eight prototype weighting functions 25
3.10 Mean absolute error formula . 26
3.11 Confidence Interval formula . 26
3.12 Obtaining a users cookie using a MitM attack or sniffing 27
3.13 Performing a session hijack using another users cookie 27
3.14 The MVC Request architecture of the applications service layer 31
3.15 Classes coupled with the Transaction object 32
3.16 Enhancement and bug fix requests as issues on GitHub 33

4.1 Comparison of TWIG and PHP for a simple template 35
4.2 Converting SGML to XML . 37
4.3 Parsing QIF transactions using the line identifier 38
4.4 Identifying the date format using regular expressions 39
4.5 Regular expression used to match d-m-Y 39
4.6 Regular expression used to match m-d-Y 40
4.7 UI Prompt asking for date format . 40
4.8 Regular expression used to match the transactor name 41
4.9 Suggestion wizard UI . 42
4.10 Activity diagram for mapping individual transactors 42
4.11 Suggestions shown on the Transactor (reference) page 43

4

LIST OF FIGURES LIST OF FIGURES

4.12 Notifications shown during the suggestion wizard 43
4.13 Mapping transactors using the suggestion wizard 44
4.14 Inheritance diagram of JsonSerializable objects 44
4.15 SQL query selecting similar mappings using PDO 44
4.16 The budget overview screen where predictions are highlighted in red . . . 45
4.17 Storing a Personal Budget by date and category 49
4.18 System activity diagram when making a prediction 49
4.19 Steps performed during a user login . 50
4.20 Steps performed during every page load request 50
4.21 Example User Agent String’s . 50
4.22 Generating a browsers fingerprint using the user agent string 50

5.1 Empty welcome screen . 51
5.2 Application main menu . 52
5.3 The upload statement screen before any uploads 52
5.4 UI update following a file selection . 53
5.5 The upload page, following successful file uploads 53
5.6 Upload confirmation following a duplicate file 54
5.7 Welcome screen following successful statement uploads 55
5.8 Suggestion wizard main screen . 55
5.9 Notifications shown after completing a successfully 56
5.10 Creating a new Transactor and selecting a category 56
5.11 Selecting a category using the autocomplete feature 56
5.12 Searching for an existing Transactor using autocomplete 57
5.13 The transaction overview screen . 58
5.14 The subcategories being used to make up a category in the overview . . . 58
5.15 The statement view . 58
5.16 Grouping the statement by category . 59
5.17 Grouping the statement by transactor . 59
5.18 Recent transactions at a particular transactor 60
5.19 Viewing an unmapped reference . 60
5.20 Layout on a standard laptop . 61
5.21 Layout on a tablet in landscape . 62
5.22 Layout on a tablet in portrait . 62
5.23 Layout on a smartphone . 62

6.1 A few iterations of the user interface designs 64
6.2 Box plot of Loyalty question responses1 66
6.3 Box plot of Loyalty question responses . 66
6.4 Responses to the task difficulty questions 67

7.1 Weighted arithmetic mean . 72
7.2 Calculating the second order weighted arithmetic mean 73
7.3 Comparison of first and second order forecasting when predicting a trend 73

5 of 96

LIST OF FIGURES LIST OF FIGURES

7.4 Using third order forecasting on data with a previous season 73

C.1 Full database schema for the project . 86

E.1 PHP Transaction−>setTransactor($name) implementation 91
E.2 Evaluating the results of the month format detection 92
E.3 Calculating wait time following a failed login attempt 92

F.1 Response from API following a successful map or create 93
F.2 POST request sent to /ajax/transactor/map 94
F.3 POST request sent to /ajax/transactor/create 94
F.4 GET request sent to/ajax/transactor/suggestions 94

6 of 96

List of Tables

3.1 Possible states following evaluation of transaction dates 21
3.2 References to the entity ‘Sainsbury’s’ found in participant data 22
3.3 Comparison of hashing algorithms hash rate on a 2.7Ghz i7 28

4.1 PHP Templating engine benchmarks . 36
4.2 QIF fields parsed . 38
4.3 Examples of the raw transactor names found on uploaded statements . . . 41
4.4 Transition table for a one off purchase . 45
4.5 Transition matrix for a one off purchase 46
4.6 Combining samples from the MCM and the weighted averages 46

6.1 The results of the prediction evaluation test, which compared predictions
and actual values . 68

6.2 First, second and third quartiles for the prediction evaluation test 68

A.1 Survey Results . 82

7

Glossary

category transactors have a category and a subcategory, e.g. Tesco = Shopping, Gro-
ceries. 13, 14, 19

global transactor the system holds two collections of transactors and mapping’s, the
global ones are shared between all users. 22, 39

mapping this connects the reference found on a statement to a Transactor. e.g. both
Snbs and Sains represent Sainsbury’s. 22

reference the memo or message that is included on the bank statement with a trans-
action. 10, 22, 23

transaction a single movement of money from/to a Transactor. 9, 10, 69

transactor somewhere money is spent, e.g. Tesco, Sainsbury’s, Byte Cafe.. 21, 39

user transactor the user transactors and mapping’s are unique to each user. 22, 39

8

Chapter 1

Introduction

Traditionally the management of personal finances is performed by viewing bank
statements provided by the users bank. In the modern age of ‘Internet banking’, banks
offer a limited set of tools that mimic the paper statements seen historically.

This project sets out to build an online application that can be used to manage
personal finances. There are two main parts of the project; firstly users can upload bank
statements, which are displayed and navigated in an intuitive manner; secondly, once
the application has enough historical data, predicting the users future outflow.

1.1 Motivation

There are four main steps when producing and using a budget: recording previous ex-
penses, sorting these into categories, using this historical information to estimate future
expenditure, and evaluating the accuracy of predictions based on the new information
and adjusting accordingly.

Since the liquidity crisis of 2009 [1], budgets have been squeezed and the average
personal disposable income has fallen significantly, hitting a nine-year low in 2012 [2].
Experts suggest that “Budgets are essential for financial planning” [3], research suggest-
ing that personal budgets lead to a “positive impact” on “mental wellbeing” [4] and
guides from UCAS, the UoM SU Advice Centre and The Manchester University Crucial
Guide encouraging use of budgeting, it is clear that producing a budget is of benefit.

In an informal survey1 by the researchers, however, the majority of students ques-
tioned did not heed this advice, and were not following a budget. Producing an easier
way to manage personal finances and predict future outflow can hopefully reduce the
barriers to entry for creating budgets and increase the people using one.

Increasing use of debit cards [5] means that bank statements contain more and more
information about where people spend their money. With access to those bank state-
ments now provided online, and most UK banks offering the option to export transaction
history, individual users can collate a database of their personal spending habits.

1Appendix A

9

1.2. AIMS AND OBJECTIVES CHAPTER 1. INTRODUCTION

The increasing availability of this data, combined with more detailed transaction
history makes it potentially possible to automate the four main steps of producing a
budget, and this is the main objective of the project.

1.2 Aims and Objectives

The key objectives of this project can be split into three parts, the management of
statements, making predictions of future outflow using those statements and ensuring a
high level of security.

1.2.1 Statement Management

Implement an intuitive way to view and manage personal finances. There are several
key parts to this, upload and parsing of transactions from statements downloaded from
the users bank, resolving the references found on the statement to the real world busi-
ness they represent and categorising the individual transactions to make them easier to
understand.

1.2.2 Prediction

Accurately predicting a users future transactions based on their transactions history.
The prediction should be made using a model that is fitted to each users individual
spending patterns, and is evaluated in order to improve the model. The application will
need to predict whether or not spending will occur and how much money will be spent.

1.2.3 Security

The project should be secure and uphold the high security expectations of users
uploading their personal information. The application will deal with information of a
sensitive nature, therefore strong security techniques are of high importance to ensure
no loss of personally identifiable information. The project should take this into account,
considering possible attack vectors and taking steps to mitigate those attacks.

1.3 Overview of Report

Chapter 2 reviews existing commercial personal finance applications and existing
techniques used to forecast time-boxed financial information.

Chapter 3 details the key design decisions made when planning the software and how
the techniques in the background research are applied.

Chapter 4 includes implementation specifics of some of the features outlined in the
design, focused particularly on features that were difficult to implement.

Chapter 5 gives an outline of the finished applications features through the use of
screenshots in a walkthrough.

10 of 96

1.3. OVERVIEW OF REPORT CHAPTER 1. INTRODUCTION

Chapter 6 reviews the application in terms of it’s user experience, prediction accuracy
and through the use of penetration testing.

The report concludes in chapter 7 which compares the project aims to what was
achieved, suggests further enhancements that could be added to the application and
outlines some further research areas.

11 of 96

Chapter 2

Background

As outlined in chapter 1 the project consists of two major parts: a financial man-
agement service, which can be used to view historical spending and gain understanding
of personal finances; and a forecasting element which predicts how much spending will
occur in the future.

2.1 Statement Management

There are existing applications that implement similar features to the money man-
agement aims of this project. The most basic examples of a similar applications are
the majority of Internet banking services in the UK. These services set out to imple-
ment statements that behave in the same way hard copy paper statements are used, a
customer can view their statements organised by month and their current balance, but
provide no additional functionality such as organising the transactions or customising
the view of the statement. However, more advanced Internet banking services do exist,
most notably Money Manager offered by Lloyds TSB, the first and only personal money
management application provided by a UK bank and Mint.com a United States (US)
only personal finance service [6], [7].

2.1.1 Lloyds Money Manager

The service is available to Lloyds TSB current account holders as part of their online
banking and its features revolve around documenting historical spending [8].

The key features include:

• Categorising spending

• Creating spending plans per category

• Viewing money spent per category

• Track progress of budget targets

12

2.1. STATEMENT MANAGEMENT CHAPTER 2. BACKGROUND

Customer reviews of the service highlight the usefulness of spending analysis screen,
which includes a breakdown of spending in each category (Fig. 2.1, as well as the spend-
ing calendar, which displays money spent in a day by day format. The reviews, highlight
some shortcomings; noting that changes to categories are not reflected immediately, cat-
egories are often incorrect and that it’s not possible to override the category for a single
transaction, for example food bought at a petrol station is placed in the Car category
and cannot be moved [9], [10].

Figure 2.1: Spending Analysis by category on Lloyds Money Manager [8]

A key advantage of the money manager is that Lloyds already have access to their
customer data no data entry or upload is required, which could be confusing and off-
putting to potential users.

2.1.2 Mint.com

Mint.com offers very similar features to Lloyds but is limited to the US. However,
Mint automatically logs into the users online bank account and downloads their state-
ments authenticating with their banking username and password. It’s reported that
this feature relies on the use of application programming interface’s (API) at each bank
which Intuit (the company behind Mint) have negotiated access individually, though
Intuit have published no information to support or dispute this [11], [12]. Although
this feature is clearly useful and saves time for the users, it does make Mint responsi-
ble for storing their customers Internet banking passwords and presumably involves fee
payments to the banks providing these API’s. For these reasons it was decided that
automatic statement uploading was outside of the budget and scope of this project,
however, the project should support manual upload of statements to avoid data entry
by users.

13 of 96

2.2. PREDICTION CHAPTER 2. BACKGROUND

2.1.3 Mobile Apps

Mobile applications (or ‘apps’) have seen a surge in popularity since the release of
smartphones and are a widespread target for small pieces of software, such as financial
organisation [13].

The three most popular iPhone personal financial applications [14], at the time of
planning the project, all offered features very similar to those found in the Lloyds Money
Manager and Mint. The most popular features being grouping money by category and
graphs of spending history. However, they all had the same drawback, the user had to
manually enter all of their transactions and set categories for them, which appears time
consuming and error prone, particularly on a mobile app [15]–[17].

The increase of mobile usage should be considered when planning the features of the
project, with the project ensuring mobile compatibility and if possible, avoiding manual
data entry.

2.2 Prediction

Predicting future transactions before they occur is technically similar to the work
done by investors on the stock market, where the objective is to predict whether the
value of a stock will fall or increase in order to make buy/sell decisions.

Preifer and Carraway demonstrated that Markov Chain Models can be used to model
customer relationships with a business and predict the expected value of a marketing
engagement with an individual customer. By creating a transition matrix of a particular
customer transitioning from not spending to spending and visa versa over five periods1,
they were able to estimate the likelihood of a spend occurring in a given period, Fig. 2.2
shows a graphical representation of the model that was produced, the states represent
the five periods, where pi is the probability of the transition occurring during period i
[18]. The researchers calculated the expected loan to value ratio (LTV) for the customer
over the periods, by producing a matrix of costs and gains associated with a purchase in
each period and multiplying that by the probability of a purchase occurring taken from
the transition matrix. This gives the expected present value for each period, which can
be used to decide when to end a relationship with a customer (preventing the costs).
They demonstrate the application of Markov Chain Models (MCM’s) to a larger dataset,
calculating the optimal policy for ending relationships with customers depending on
varying costs concluding that the use of MCM’s is an effective way of making customer
relationship decisions. However, this paper assumes the company making predictions
already knows how much money a customer will spend during each interaction and is
focused around calculating the probability of a spend occurring. An implementation
applied to the personal spending space will require a way to predict the value of the
future transaction.

A MCM is a mathematical model that is defined by a collection of states and the set
of probabilities of a transition occurring between those states. The model visualised as a

1An ‘illustration’ assuming a customer will never return after 5 months of not spending

14 of 96

2.2. PREDICTION CHAPTER 2. BACKGROUND

graph shown in Fig. 2.2 defines five states, and shows the probability of the transitions
occurring those states on the edges. As the likely hood of transitions are known, the
probability of a particular sequence occurring can be calculated, for example the prob-
ability of the sequence 11234 in the figure is p(11234) = p(1)p(1|1)p(2|1)p(3|2)p(4|3).

1 2 3 4 5

1− p1

p1

1− p2

p2

1− p2

p3

1− p2

p4

1.0

Figure 2.2: Markov Chain Model for a particular customer over five periods [18, Adapted
from Fig. 1]

Research by Singh et al., from the Massachusetts Institute of Technology, studied the
spending behaviour of 52 adults and investigated the impact of social interactions, includ-
ing text messages, phone calls and face-to-face meetings, on the participants spending
in order to predict their spending behaviour. Using a Näıve Bayes classifier and select-
ing a subset of their available features using an Information Gain approach, choosing
those with most relevance to each classification task, they were able to correctly classify
whether the participant would overspend, explore a diverse range of businesses and re-
main loyal to a business with 72% overall accuracy. They concluded that social factors,
were better “predictors of spending behaviour” than personality traits, which had been
previously studied [19]. Although this paper did not study the affects of the partici-
pants previous transactions on spending, they were able to predict the users spending
behaviour, highlighting that factors other than the transaction history may be of im-
portance when trying to predict a users future outflow. However, the paper does not
attempt to make a prediction of the amount spent or how many transactions occur.

Smoothing is typically applied to financial market data, for example the value of a
particular stock on the FTSE 100. The most common techniques are simple, weighted
and exponential moving averages, which all reduce the noise found in the data potentially
revealing an orderly process, by removing outliers found in the data. The result of this
effect can be seen in Fig 2.3 [20].

These techniques can be applied to a discrete set of numerical time series data, such
as personal expenditure over time in order to make an estimate of what the next value
in the series will be [21]. A prediction can be made using the formula in Fig. 2.4, where
wi is the weight and xi is the value at time period i. Simple smoothing is the equivalent
of wi = 1, while exponential smoothing is based around a negative exponential law such
as wi = e−n+i, both are examples of weighted smoothing and the weights can be decided

2A stock market index of 500 American companies, the US equivalent of the FTSE 500

15 of 96

2.3. SECURITY CHAPTER 2. BACKGROUND

Figure 2.3: Simple Moving Average (MA) [blue], Weighted MA [red] and Exponential
MA [black] of the S&P5002[20, Fig. 5]

in different ways depending on what is being predicted. Time periods with a higher
weight have a greater affect on the mean, so in order to make a future prediction, the
most recent time period would have a higher weight.

w1x1 + w2x2 + · · ·+ wnxn
w1 + w2 + · · ·+ wn

.

Figure 2.4: Using weighted smoothing to predict a future value

Smoothing (and therefore prediction) can be extended to take into account trends
and possible seasonal fluctuations using double and triple smoothing, respectively. A
technique known as ‘Holt-Winters double exponential smoothing‘ takes into account
trends in data, which single smoothing does perform accurately with, by factoring the
weighted average growth between previous time series when calculating the average for
each period [22]. Extending the calculation into double and triple smoothing when
estimating a users future outflow was decided as a possible extension for the project. A
discussion of this technique can be found in subsection 7.2.2.

2.3 Security

As the project stores peoples personally identifiable information and needs to be
backed by strong security standards, before designing the project and as part of the
ethics application procedure common web security practice was researched.

16 of 96

2.3. SECURITY CHAPTER 2. BACKGROUND

2.3.1 Account Hijacking

On the web, information is sent between the users web browser and the remote server
over HTTP information in plain text and can easily be read using a man-in-the-middle
attack. This risk is compounded if accessing the Internet via an an unencrypted WiFi
connection3 which would allow anyone in the local area to ‘sniff’ the information by
simply scanning for capturing the transmitted packet.

If a website involves authentication, this becomes a serious security risk. Authen-
tication is usually performed by sending the username and password in plain text to
a remote server which is validated, and if valid issuing the user with a session cookie.
A potential attacker could observe and store these usernames and passwords, which is
why commonly used websites such as Facebook use HTTPS for the login, ensuring the
usernames and passwords are sent encrypted to the server.

If a website falls back to HTTP following authentication, the risk of unauthorised
account access is still prevalent. In order to identify which user the browser is authenti-
cated as it sends a session cookie to the remote server with each request. Although the
attacker can’t observe the username and password, the session cookie is being sent in
plain text with every request, and the attacker can perform a session hijack by down-
loading the content of that cookie to their local machine (Fig. 3.12) and then sending
it to the remote server with their HTTP request ‘proving’ they are the user and gaining
access to their account (Fig. 3.13) [23]. Firesheep was a proof of concept plugin for Fire-
fox released in 2010 that demonstrated this vulnerability, showing that session hijacking
could be performed on popular sites including Google, Facebook, Twitter, Dropbox and
Flickr, which until recently were not using sitewide SSL to protect their cookies [24], [25].
More recently ‘WhatsApp Sniffer’, available on Google Play until May 2012 was able
to display messages addressed to other WhatsApp users connected to the same network
using this technique [26].

2.3.2 Password Security

A common cracking technique used to gain unauthorised access to a user account is
a known as a brute force attack. If an attacker knows a particular users username they
can perform targeted guessing of the password by enumerating through all possibilities.
A websites ability to resist this kind of attack is called the ‘password guessing resistance’.
It is for this reason that many websites enforce password rules in an attempt to increase
the number of possible combinations for a password, or the entropy [27].

Shannon Entropy can be used estimate the strength of a passwords resistance to this
kind of attack. The entropy is calculated using H(X) = −

∑n
i=1 p(xi) logb p(xi) where

p(xi) is the probability of the value x occurring [28]. The paper suggests a predefined set
of rules for estimating entropy based on Shannon’s work studying English text, however
other papers found that using this predefined set of rules was not a valid measure of
password strength [29].

3Common at Coffee Shops and Universities

17 of 96

2.3. SECURITY CHAPTER 2. BACKGROUND

2.3.3 Database Storage

Unfortunately, it is common for the contents of a websites database to be leaked,
whether by an administrator of the website or using other techniques such as SQL
injection [30], [31]. It’s important to think about the security of the data held within
the database, as well as the security of the front end.

If a users password is stored in a reversible state, whether that is plain text or
encrypted and the database is leaked, not only can the users account on the original
website be compromised, but the data can be used attack other websites where the user
uses the same username and password. Encryption is equivalent to plain text in that, it
is simply a case of finding the encryption key, which is very possible using brute force
and all the data is in plain text. This is why standard security practice is to hash
passwords. The only way to ‘decrypt’ a hash is to guess the original input by brute
force and see if that matches the output. However crackers often make use of Rainbow
tables, collections of precalculated hashes and the input used to create them, allowing
an attacker to simply lookup a hash in their database to get the result rather than
enumerating all the possibilities [32]. To reduce the effectiveness of this attack method,
‘salting’ is commonly used. Salting involves adding a random collection of numbers and
letters to each password. This means that the generated hash is dependent on both the
users password and the salt, and therefore a Rainbow Table would need to be generated
for each user, cancelling out the advantage of precalculation and making the tables
useless [33].

18 of 96

Chapter 3

Design

This chapter covers design of the system, including an overview of the architecture
and descriptions of the key components.

3.1 Statement Management

The statement management features of the application were selected based on the
functionality observed during the background research and conversations with potential
users, asking what features they enjoyed from their current Internet banking and what
additional features they would find useful to manage their statements

The key features include; parsing of files downloaded from Internet banking, mapping
transactions found in the files to real world businesses (transactors), organising trans-
action history by category or transactor and viewing all transactions at a particular
transactor.

3.1.1 Upload

To get a users transaction history they must first upload a file containing their
historical transactions.

The major UK banks tested1 provided statement downloads in Quicken, Microsoft
Money or Microsoft Excel format. Further investigation revealed that the underlying
formats were Quicken Interchange Format (QIF), Open Financial Exchange (OFX) and
comma-separated values (CSV).

As there is no pre-defined standard for bank statements in CSV format, upon in-
vestigation, it became clear that the banks used completely different structures. It was
decided the application would parse the QIF and OFX formats, following their respective
specifications. Examples of QIF and OFX can be seen in Fig. 3.2.

It was quickly identified that although the QIF/OFX files were following the same
specification, depending on the bank they had different structures, and in some cases
the structures even varied within the same bank, depending on the exact wording of the

1Natwest, First Direct and HSBC

19

3.1. STATEMENT MANAGEMENT CHAPTER 3. DESIGN

% QIF FORMAT
! Type : Bank
D28−06−13
PASDA SUPERSTORE TROWBRIDGE
T−15.00
ˆ
D28−06−13
PPAYPAL PAYMENT
T−12.50
ˆ

Figure 3.1: Two transactions in QIF format

% OFX FORMAT
<STMTTRN>
<TRNTYPE>POS</TRNTYPE>
<DTPOSTED>20130628</DTPOSTED>
<TRNAMT>−15.00</TRNAMT>
<NAME>ASDA SUPERSTORE</NAME>
<MEMO>TROWBRIDGE</MEMO>
</STMTTRN>
<STMTTRN>
<TRNTYPE>DEBIT</TRNTYPE>
<DTPOSTED>20130618</DTPOSTED>
<TRNAMT>−12.50</TRNAMT>
<NAME>PAYPAL PAYMENT</NAME>
</STMTTRN>

Figure 3.2: Two transactions in OFX format

download. Interestingly an OFX file downloaded from First Direct was found to be in
QIF format, despite an .ofx suffix.

Notably there were discrepancies with the formatting of dates in QIF. The specifi-
cation from Intuit2 does not specify a date format [34]. The sample files tested included
dates in D-M-Y, M-D-Y and Y-M-D format.

To combat this, three steps of resiliency were added to the design of the upload
system, seen in Fig. 3.3.

Having uploaded the file the system first identifies the file type by looking inside the
file and parsing its contents, ignoring the extension and rejecting the file if it matches
neither format.

If the file is QIF the parser parses all transactions up front and evaluates the format

2The developers of Quicken and QIF

20 of 96

3.1. STATEMENT MANAGEMENT CHAPTER 3. DESIGN

Figure 3.3: Activity diagram for statement uploads

of the dates. If the dates are found to have the format 00−00−0000 the system needs to
decide whether that’s DD-MM-YYYY or MM-DD-YYYY, otherwise performing stan-
dard date parsing of the string. To decide between D-M-Y or M-D-Y the application
goes through all the dates and attempts to parse in both formats, if a format fails it is
marked as incorrect. This leaves the application in one of the four states, seen in Table
3.1. In the case of state 1 or 4 there is ambiguity and the application prompts the user.
This ambiguity can be caused by dates that are malformed or a collection of dates falling
within a range that doesn’t have a day value over 12, as both formats parse correctly.

State D-M-Y M-D-Y
1 true true
2 true false
3 false true
4 false false

Table 3.1: Possible states following evaluation of transaction dates

In provisional user testing, it was discovered that users had a tendency to upload the
same file more than once or to upload statements with an overlapping date range. To
account for this, before creating a new Transaction the application checks for an identical
transaction for the current user in the database and if one is found, skips creating a new
Transaction. For speed this is done using a stored unique value, resulting from a SHA512
hash of date posted, transaction value, transactor, memo and transaction id3, which is
generated when saving a Transaction to the database.

3.1.2 Named Entity Resolution

Almost all functionality of the project relies on successfully mapping the text found
on a bank statement that represents a business or person to a single entity in the appli-
cation, known as a transactor by the system. After a cleanup of different suffixes that
banks append it was found that transactors are often referenced using several names.

Seen in Table 3.2, Sainsbury’s was referred to nine different ways in the statement
data uploaded by the research participants and similar results are found for most trans-
actors.

3If a one was provided by the users bank

21 of 96

3.1. STATEMENT MANAGEMENT CHAPTER 3. DESIGN

Reference Occurrences

sainsburys s/mkts 46
sainsburys s/mkt 9
sainsburys s/mkts cd 7
js online grocery 2
sainsbury s/mkt cd 2
sainsburys smkt 2
js online grocer 1
sainsburys superma 1
sainsburys-superma 1

Table 3.2: References to the entity ‘Sainsbury’s’ found in participant data

Mapping to Entities

In consideration of this, the concept of mappings was added to the system. A map-
ping is a single reference to a transactor, such as ‘sainsbury s/mkt’. A transactor has
multiple mappings. Fig. 3.4 shows this structure.

Figure 3.4: Overview of Mapping objects

Global vs User

As identified in the background research, it should be possible for users to both
categorise and organise transactions according to their preferences and override existing
categories, however categories chosen by a particular user should not affect other users.

To support this the application stores two sets of mappings and transactions, User
and Global. The structure of the relevant objects is shown in Fig. 3.5. A Transaction
can have both a UserMapping and a GlobalMapping, in which case the UserMapping
overrides the GlobalMapping when calling methods such as getMapping() on the Trans-
action.

Figure 3.5: Overview of User Mappings

22 of 96

3.2. PREDICTION CHAPTER 3. DESIGN

3.1.3 Suggestions

Having mapped references to entities, the system is able to use this knowledge to
make suggestions of appropriate entities for unseen references in some cases to help
streamline the naming process for potential users. This is performed by taking the
list of mappings and finding those with the smallest difference to the unseen reference.
Difference can be calculated in several different ways, including the Levenshtein distance
which calculates the number of single-character edits to transform between the two
strings, implementation details for this project can be found in Section 4.2.3 [35].

3.2 Prediction

In order to make a prediction of how much money a user will spend and receive
in a given period, two steps need to be completed; predicting whether or not each
individual transaction will occur in a given month; and estimating how much money will
be involved.

Drawing from the research detailed in chapter 2, the system uses a First-order Markov
Chain model to decide whether or not transactions will occur, and weighted arithmetic
means to predict how much money will be spent.

3.2.1 Markov Chain Models

An easy way to visualise the Markov Chain Models the system is creating is through
a directed graph. Two frequent examples are shown in Fig. 3.6 and 3.7, taken from
participant data, where 0 represents a transaction not occurring, 1 is the opposite and
the edges are labelled with the probability of transitioning from one to the other.

0 1

0.86

0.14

0.8

0.2

Figure 3.6: Transition diagram for a monthly pay check

0 1

0

1

0.91

0.09

Figure 3.7: Transition diagram for a one off purchase

23 of 96

3.2. PREDICTION CHAPTER 3. DESIGN

3.2.2 Weighted Arithmetic Mean

Having predicted whether a transaction will occur or not the system needs to predict
how much money would be spent. A simple way to make this prediction is taking
the mean, however initial testing in MatLab revealed that simply taking an average is
affected highly by changes in spending patterns and skewed by outliers. In addition, a
spending pattern that suddenly changes (for example one caused by the user changing
supermarket) takes too long to be reflected in the prediction.

Supported by the background research on weighted smoothing, the system uses
weighted averages to account for this. A weighted average is similar to an average
but each value is scaled in it’s effect by a weighting factor, this allows the system to give
a higher weight to more recent transactions.

The weighted average calculation used is shown in Fig. 3.8 where w(t) is the weighting
function for time t, the most recent month is t = 0 and t = n− 1 is the oldest month.

x̄ =

n−1∑
t=0

w(t)× xt
n−1∑
t=0

w(t)

Figure 3.8: Weighted arithmetic mean

3.2.3 Five Model System

Using weighted averages is only part of the solution, the system needs to choose
appropriate weights for each transaction and the weights chosen will have a different
suitability depending on the spending patterns of the user. During initial research on
weighted averages, it was observed that due to the variety of spending patterns caused
by users different spending habits, there was not a ‘one fits all’ solution to weighting. For
this reason five different weighting functions were selected and when making a prediction
the application selects the weighting algorithm most appropriate for the user.

The five weighting functions were selected from a set of eight (shown in Fig. 3.9)
after experimentation with personal finance data in MatLab. They were selected for
significant differences in behaviour. There are four main function types: Exponential
relationship wx = ex, decay wx = 1/x+ 1, power wx = x1 and static wx = 1. One
exponential, power and static were selected, and two examples of decay with a variable
to affecting the speed of the decay. It would be possible to include a scaling parameter
(decay constant) for each weighting function, leading to adaptive weights and to use a
learning algorithm to select the optimal value for that parameter, this is discussed in
Section 7.2.3.

To select the best fit weighting function for each user, the system splits the complete

24 of 96

3.2. PREDICTION CHAPTER 3. DESIGN

Figure 3.9: The eight prototype weighting functions

months4 from the users transaction history into two parts. Training contains 75% of
months, starting with the oldest and the remaining 25% (the most recent) is used for
testing. If less than four months are available the most recent month is used for testing
and the remainder for training. In the case where between zero and two months are
available the application falls back on a simple average.

Having split the data, the application loops through all the weighting functions
available, calculating the weighted average of the testing data and evaluating the mean
absolute error (Fig. 3.10) on the training data, by comparing the prediction to the actual
value. The function with the least absolute error is best fit to the users overall spending
pattern, and so it is selected.

In testing it was discovered that users spending money in similar categories often
best suited the same weighting model. Upon further investigation it was discovered
that by finding the best weighting model per category in addition to user, on average
the absolute error was less. For this reason the most recent implementation of the five
model system goes through a users spending in each category, selects the best model for
each and uses that to make the prediction in the category. Further research could be
done into different levels of modelling and the effect of this on the fit of the model to
the user, this is discussed in Section 7.2.1.

3.2.4 Confidence

As the prediction from the Markov Chain Model is based on probabilities it is unsta-
ble. To account for this, when making a prediction, the application repeats the process
of reading from the MCM up to 10, 000 times per second. The repetition of the reading

4Months that have passed fully

25 of 96

3.3. SECURITY CONSIDERATIONS CHAPTER 3. DESIGN

MAE =
1

n

n∑
i=1

|fi − yi|

Figure 3.10: Mean absolute error where fi is the prediction and yi is the true value

is used to produce a confidence level of the final prediction once all the results are com-
bined, which is displayed to the user. The confidence level is displayed as a plus/minus
value next to the prediction and gives an indication of how sure the application is.

Assuming the results follow a normal distribution the 95% confidence interval is
calculated by Fig. 3.11 where x̄ is the arithmetic mean of the predictions, xi is the value
of prediction i and z is a value sampled from a standard normal table for the desired
confidence interval.

x̄± z

√
1
n

n∑
i=0

(xi − x̄)2

√
n

Figure 3.11: Confidence Interval formula

3.3 Security Considerations

Strong security is expected of this project. The design considers possible attack
vectors and takes steps to prevent or reduce the effectiveness of those attacks.

3.3.1 Account Hijacking

To prevent the security concerns highlighted in section 2.3.1 the entire project uses
HTTPS, marks cookies as HTTPS only5, and redirects users to the HTTPS version if
they attempt to access via HTTP. This ensures user data is sent encrypted end to end
and cannot be intercepted, preventing access to their authentication details or session
cookie. In addition cookies are marked as HttpOnly, ensuring access via non-HTTPS
methods such as client side javascript is not possible. This means that even if a users
browser is infected with a malicious script for example using XSS (see 3.3.4), the contents
of the cookie cannot be read.

5Using the Secure attribute

26 of 96

3.3. SECURITY CONSIDERATIONS CHAPTER 3. DESIGN

Figure 3.12: Obtaining a users cookie using a MitM attack or Sniffing [23]

Figure 3.13: Performing a session hijack using another users cookie [23]

3.3.2 Password Security

The project uses Shannon’s original equation, using a formula to calculate the prob-
ability of guessing each individual character. The formula takes into account that using
a larger character set (such as numbers and symbols) decreases the likely hood of suc-
cessfully predicting the following character and if it falls below a predefined entropy
rejecting the password. Enforcing an entropy threshold rather than enforcing a set of
restricting ‘password rules’, was preferred as it gives the user more flexibility hopefully
avoiding the annoyance of rules and increases the search space of the passwords. A very
long alphanumeric password such as ‘correct horse battery staple’ would be just as valid
as a short password containing numbers and symbols such as ‘6?@7a?Y5R=’.

As part of a brute force attack, the attacker may use a dictionary of popular pass-
words to reduce the testing space before attempting an exhaustion attack. In order to
reduce the effectiveness of this kind of attack the project tests any user provided pass-
word against a dictionary of at least 50,000 common passwords sourced from password
cracking resources [28].

In addition, to limit the overall effectiveness of brute force attacks, the website rate
limits login attempts. If a user attempts to login more than 5 times within one minute,
they must wait thirty seconds before they are able to attempt to login again. Rate limit-

27 of 96

3.3. SECURITY CONSIDERATIONS CHAPTER 3. DESIGN

ing was chosen over CAPCHA6 found on many websites as CAPCHA’s slow down users,
are often illegible and visual CAPCHA’s can prevent visually impaired users from ac-
cessing the website [36], [37]. Additionally CAPCHA’s can now be solved automatically
with a very high success rate using computer vision techniques, and these techniques are
already being integrated into brute force software available online [38]–[41].

3.3.3 Database Storage

As detailed in section 2.3.3, security considerations of storing information in a database
were considered. Three main techniques for ensuring the security of the users information
stored in the database were employed.

Passwords

Passwords are hashed and salted and different hashing functions were investigated.
Traditionally functions such as MD5, SHA1 and SHA256 are used to perform the hashing,
however due to advances in modern computer equipment it is possible to generate these
at an incredibly fast rate, reducing the time taken to brute force a hash. Using a
deliberately slow hashing function is designed avoid this problem. Blowfish written by
Bruce Schneier is commonly suggested, as it is designed as a computationally expensive
operation [42] . This was evaluated with a simple test, counting the number of hashes
completed in one second on the server hosting the project. Table 3.3, shows the results,
which found that, on average, Blowfish took significantly longer to generate each hash7.
For this reason the project salts all passwords and hashes them using Blowfish.

Hashes Per Second
Average Standard Deviation 95% Confidence Interval

MD5 2,296,667 12,923 ±8010
SHA1 1,869,725 14,783 ±9162
BLOWFISH 17 0 ±0

Table 3.3: Comparison of hashing algorithms hash rate on a 2.7Ghz i7

Personally Identifiable Data

Another concern is personally identifiable data being leaked. In an attempt to avoid
this the application encrypts all information stored in the user table, that is needed
at a later date using the AES128 encryption standard. This standard was selected for
the project as was endorsed by the U.S. National Institute of Standards and Technology,
when outlined by NIST in 2001 and has become the “encryption standard for commercial
transactions in the private sector” [43], [44].

6Completely Automated Public Turing test to tell Computers and Humans Apart
7The code used to perform the test can be found in Appendix B

28 of 96

3.4. TECHNICAL DESIGN CHAPTER 3. DESIGN

Hashing of Usernames

In addition to the encrypting of data needed at a later date, the username of each
user is hashed so it is only known to the person using that account. In the rare case
that any of the passwords were brute forced, the relevant username would also need to
be brute forced in order to attempt a login or use the details on another website.

3.3.4 Other

Other attack vectors including SQL injection8 and cross-site scripting9 (XSS) were
also considered.

It was decided that the project would use a prepared statements to reduce the risk
of SQL injection. By sending the query followed by the parameters as literal values the
database server would not interpret them as an executable portion of SQL and attacks,
relying on escaping SQL such as ’ OR 1 are prevented.

In order to mitigate the possibility of XSS the project will need to escape all content
before displaying it to the user or saving to the database. It was decided that the project
would use a templating language that escaped output by default, requiring the output be
explicitly marked to avoid escaping. By escaping all content before displaying it to the
user a maliciously crafted piece of text such as <script>alert(1);</script> would be
sent to the users browser as < script>alert(1);< ;/ script> and not interpreted
as a script.

3.4 Technical Design

It was decided that the project would be implemented as a web application. Use
of a web application ensures the features of the project can be accessed from anywhere
with Internet connectivity and that it is not tied to a particular piece of hardware or
operating system.

3.5 Language Choice

As the project is a web application, the user interface was written in HTML & CSS,
with the interactive elements in JavaScript. PHP was used on the service side to process
the user requests, render the page and access the database which was implemented using
MySQL.

PHP was selected because the author had extensive experience in the language, it’s
original intended use was web development and it is well supported. It’s intention of
web development means it’s well coupled with HTML and provides many libraries to
handle it, giving the language a significant advantage over languages such as Python
and Java which can be adapted for web use. A key hindrance of PHP is that is it

8A code injection technique that uses maliciously crafted statements to modify the SQL executed
9Inserting client-side scripts to a websites HTML to customise it’s logic

29 of 96

3.5. LANGUAGE CHOICE CHAPTER 3. DESIGN

weakly typed which lead to issues during development where objects were passed into
functions expecting another object type, weakly typed languages, such as PHP, have no
compile-time validation to identity this mistake.

MySQL was selected as the database language because it’s well supported by PHP
and because it provides Natural Language Searching out of the box, which supports
free-text queries and can calculate the relevance of a record in the database to a search
term. This is used to power the suggestions feature of the website and for user entered
searches.

3.5.1 Design Patterns

The project is implemented using object oriented programming (OOP). OOP is an
example of a modular programing, where ‘Objects’ have attributes and methods. In PHP
objects are instances of classes, and these classes interact with each other to perform a
task.

During both the design and implementation phases the General Responsibility As-
signment Software Pattern (GRASP) design principles outlined by Larman were followed
when assigning responsibility to objects within the application. These principles were
designed to encapsulate well tested principles of object-oriented design used to identify
‘good’ software [45].

High Cohesion

Cohesion is a measure of how focused the responsibility of an object is. Every
object should have a highly focus purpose and only perform tasks associated with that
focus. Ensuring high cohesion throughout the project results in classes are easier to
understand, maintain, reuse and adapt as modification are unlikely to affect other parts
of the system. High cohesion also lends itself to low coupling, another principle, which
assigns responsibility to ensure low dependency between classes, that is a particular
component has as little knowledge about other components as possible.

All functionality related to a particular topic has been split into separate classes and
in some cases, such as the prediction system, several subclasses.

Controller

The application follows a model-view-controller pattern (MVC), which assigns re-
sponsibility of dealing with service events to a controller, encapsulates the business logic
in the model and handles the user interface separately in the view. The controller is
responsible for receiving the raw web requests, routing them to appropriate part of the
application and then returning a rendered page to the user to be viewed in their web
browser. Use of the MVC pattern is also an example of the indirection pattern, used
to reduce coupling, which uses an intermediate object (the controller) as the interface
between two other systems (the view and the model).

In this project, the model was split into several subsections (by functionality) to
encapsulate the logic even further and these sub-models handle and manipulate the

30 of 96

3.5. LANGUAGE CHOICE CHAPTER 3. DESIGN

shared objects in the database. The responsibility of the objects and modules was
assigned following the information expert principle, objects which hold the information
necessary to complete a task, should be responsible for that task. The view is handled
by a templating engine that allows the user interface to be defined in template files,
rather than application logic. The output of the models is passed to the view, via the
controller, which returns a complete HTML page to send to the user.

Protected Variations

The Protected Variation principle states that elements of the design that are likely to
change in the future should be protected from this change by being accessed through an
interface. The database access system, which is abstracted from the underlying database
server, is an example of Protected Variation found in this project.

3.5.2 Architecture

The service layer of the application uses an follows a MVC request pattern, shown
in Fig. 3.14. A HTTP request sent to the server is handled by routing, passed to the
appropriate part of the controller, which interacts with the model before generating the
view and returning it to the client.

Figure 3.14: The MVC Request architecture of the application’s service layer [46]

The Transaction object, shown in Fig. 3.15, which represents individual transactions
on a users statement is the core of the applications model. It is coupled to the User,
Import, Category and Transactor objects. The Import object is associated with an
upload of a users statement, and contains a summary of the uploaded files contents
including the date range that was found within the file. Transactions are (indirectly)
associated with a Transactor, which represents a real world business that money can be
sent to or from.

A full database schema for the application is shown in C on page 85, further examples
of system architecture are shown in section 4.2.3 and section 4.3.

31 of 96

3.5. LANGUAGE CHOICE CHAPTER 3. DESIGN

Figure 3.15: Classes coupled with the Transaction object

3.5.3 Project Management

The project was developed in an iterative manner. Key pieces of functionality iden-
tified in the planning process were designed, implemented, deployed and tested first.
The functionality was then reviewed by potential users, the developer and the project
supervisor using lab observations and face-to-face conversations. The results of these
discussions were used to decide on the next piece of functionality to implement and to
adjust the plan as appropriate, restarting the process. Using an iterative method en-
sured that the project was build incrementally, starting with the most important features
first and that a copy of the application, with the completed stable features was always
available for testing and evaluation.

The project code base was managed using the distributed version control system Git.
GitHub was selected as the host for the Git repository to keep an external backup of the
code base and to access it’s project management features [47]. Functionality and bug
fix requests created during the testing and review phases were managed using the issues
system (Fig. 3.16). To start a new iteration, a milestone, containing a subset of the
issues listed select by priority, was created, and this milestone was associated with a new
git branch. Once the features were complete, the branch merged into the master branch,
which contained a stable copy of the project at all times, and automatically deployed
to the web server using post commit hooks. After completing the merge, the milestone,
and all associated issues were marked complete and the process was repeated.

32 of 96

3.5. LANGUAGE CHOICE CHAPTER 3. DESIGN

Figure 3.16: Enhancement and bug fix requests as issues on GitHub

33 of 96

Chapter 4

Implementation

This section is focused on particularly interesting parts of implementing the design
outlined in chapter 3 and use of external libraries.

4.1 Key External Libraries

A full list of external libraries and frameworks used by the project can be found in
Appendix D.

4.1.1 Server Side

Framework

The project uses a PHP Framework, written by the report author, to handle func-
tionality that is common across different web applications, including request routing,
template generation and caching.

Using the framework has several key advantages over writing the whole system from
scratch:

Model View Controller MVC is enforced ensuring ensures models (data structures),
views (page content) and controllers are separate, improving cohesion and decreas-
ing coupling

Code Structure Code is structured in a standardised manner, split by functionality
and is not executable over the web

Rapid Code Development Functionality such as routing, security and caching, that
is common between web applications is already implemented

Vendor Libraries External libraries supported by the framework can be used without
additional code, such as Twig, the template engine

34

4.1. KEY LIBRARIES CHAPTER 4. IMPLEMENTATION

<?php if($items): ?>

<?php foreach($items as $item): ?>

* <?php echo htmlspecialchars(strtoupper($item ->name), ENT_QUOTES , '
UTF -8') ?>

<?php endforeach; ?>

<?php else: ?>

No item has been found.

<?php endif; ?>

(a) PHP as a Templating Engine

{% for item in items %}

* {{ item.name }}

{% else %}

No item has been found.

{% endfor %}

(b) TWIG as a Templating Engine

Figure 4.1: Comparison of TWIG and PHP for a simple template

Twig

Twig is a PHP template engine that takes collections of PHP objects and following
a provided .html template generated the HTML output that is ultimately sent to the
browser. Although PHP itself is by design a template engine, using a dedicated tem-
plating engine allows separation of concerns and addresses the shortcomings of PHP as
a template language.

Twig includes idioms for common needs including a for/else structure which loops
through a list or, if that list is empty, evaluates the else clause and template inheritance;
is unit tested; caches all generated templates leading to significant speed increases for the
end user and provides shorthand filters such as [1, 2, 3, 4]| first but most importantly,
escaping is enabled by default. In twig all data output as part of a template is converted
to the equivalent HTML entity so it cannot be parsed as a script or HTML. A comparison
of Twig and PHP for a simple page containing a for loop and output escaping is shown
in Fig 4.1.

Twig was selected over alternative engines as it is both well documented and sup-
ported, supports extensions out of the box which can be used to add additional func-
tionality and as shown in Table 4.1 is by far the fastest when compared to alternatives
[48].

Propel

Propel is an object relational mapping (ORM) library for PHP, which allows the
storing and loading objects to and from a relational database. Propel takes, a database
schema defined in XML and generates PHP objects that representing the schema which
can be saved to, and loaded from, the database [49].

35 of 96

4.1. KEY LIBRARIES CHAPTER 4. IMPLEMENTATION

Library Time (sec) Memory (Kb) Renders per second
Twig 3 1,190 3,333
PHPTAL 3.8 2,100 2,632
Dwoo 6.9 1,870 1,449
Smarty 2 12.9 2,350 775
Smarty 3 14.9 3,230 671
Calypso 34.3 620 292
eZ Templates 53 5,850 189

Table 4.1: PHP Templating engines compiling and rendering a simple page 10,000 times
[48]

Use of an ORM has four main advantages, it abstracts the database layer provid-
ing a common interface protecting against change, it allows for business logic to be
encapsulated in the generated objects and not the database, it helps address the cross
cutting concerns of database access and wraps common database design patterns in easy
to access functions. In addition to these common ORM features, Propel wraps object
inheritance in an API, for example to get all the transactions that a user has made
$user−>getTransactions() is called which returns an array of Transaction objects.

4.1.2 Client Side

Bootstrap

Bootstrap is a CSS framework for creating user interfaces. It provides a grid layout
system, pre-designed reusable components such as buttons; implements common CSS
design patterns and supports responsive web design, as well as gracefully degrading
when using older browsers or mobile devices [50].

An extended version of bootstrap is used for the front end of the project, though the
colour scheme and layout has been heavily modified to ensure the application doesn’t
look like a ‘Bootstrap website’ which is a common complaint of web designers and to
ensure a common brand [51], [52].

jQuery

jQuery is a JavaScript development framework that abstracts differences in browser
behaviour and provides shorthands to common JavaScript tasks such as AJAX requests,
element selection, and HTML traversal and manipulation. It’s used throughout the
website for javascript user interface effects and powers the core of the suggestion wizard,
which is detailed further in subsection 4.2.3. It was chosen for the project over other
JavaScript frameworks as it is; extendable, open-source, , provides method chaining and
is supported by large respected companies on the web including Google and Microsoft
[53].

36 of 96

4.2. STATEMENT MANAGEMENT CHAPTER 4. IMPLEMENTATION

foreach(preg_split("/((\r?\n)|(\r\n?))/", $this ->OFXContent) as $line){

// Trim whitespace

$line = trim($line);
if ($line === '') continue;

// Convert charset to UTF -8

$line = iconv($charset , 'UTF -8', $line);
if (substr($line , -1, 1) !== '>') {

list($tag) = explode('>', $line , 2);

$line .= '</' . substr($tag , 1) . '>';
}

$buffer .= $line ."\n";

}

Figure 4.2: Converting SGML to XML

4.2 Statement Management

4.2.1 Upload

OFX is stored an XML like format called Standard Generalized Markup Language
(SGML). XML is a subset of SGML that relies on opening and closing tags to idenfity
information. PHP has inbuilt libraries for parsing XML such as SimpleXML and using
those existing functions was preferred to implementing a custom parser for SGML. As
SGML is similar in structure to XML it is possible to convert an SGML file to XML
using post processing to modify the tag structure [54], [55].

When parsing the OFX, the application first attempts to parse it as an XML file
and captures any exceptions. If exceptions are found it attempts to convert the OFX
file to XML and repeats the process. The conversion is performed by considering each
line of the SGML, trimming the whitespace on either side, converting the contents to
UTF-8 so it’s valid in XML and if no closing tag is found, which is a requirement of
XML, appending the closing tag. This implementation is shown in Fig. 4.2.

Having parsed the SGML into objects it can just be navigated following the spec-
ification and converted to arrays of information for each transaction, referred to as
movements. These movements look like XYZ; and can then be converted into the Trans-
action objects most of the fields are handled automatically but dates need to be handled
specifically.

QIF is handled in a different manner as there are no native libraries to parse its
format. As per the Fig. 3.2 shown in section 3.1.1 shown in the format is a list of
individual movements, with each terminated a .̂ Each field associated with an individual
movement is identified with a letter, explaining the contents of that line. The field types
that the project was interested in and parses are shown in Table 4.2.

In a similar manner to parsing the OFX files, the application loops though all the
lines found in the file, switching on the identifier and sorting the information into an
array representing that movement.

37 of 96

4.2. STATEMENT MANAGEMENT CHAPTER 4. IMPLEMENTATION

D Date
T Amount
C Cleared status
P Payee
M Memo
ˆ End of entry

Table 4.2: QIF fields parsed

$id = substr($line , 0, 1);

$content = trim(substr($line , 1));

switch ($id) {

case '^': // End of entry

$this ->movements [] = $newMovement;
$newMovement = array();

break;

case 'T': // Amount

$newMovement["value"] = floatval(preg_replace("/[^0 -9. -]/", "",

$content));
break;

case 'D': // Date

$newMovement["date"] = $content;
break;

// etc ...

Figure 4.3: Parsing QIF transactions using the line identifier

As outlined in section 3.1.1 the conversion from the array to a Transaction object
is slightly more involved due to unknown date format. To implement this in PHP, be-
fore beginning the conversion, all movements are tested against two regular expressions
(regex), representing the possible formats of the dates, which are visualised as graphs
in Fig. 4.5 and 4.6. Having considered all the movements found in the file, the appli-
cation has either decided on one of the date formats or prompts the user to decide the
appropriate format, as seen in Fig. 4.7.

4.2.2 Named Entity Resolution

Following the implementation of the mapping architecture outlined in the design,
the majority of the named entity resolution is done in the setTransactor method of the
Transaction object, which is called when setting the name of the transactor for a each
transaction found in the uploaded file. The method performs three key actions, tidying
the string, removing common notation added by banking institutions and checking the
database for known user and global transactors, otherwise creating a new one. To avoid

38 of 96

4.2. STATEMENT MANAGEMENT CHAPTER 4. IMPLEMENTATION

$dmy = true;

$mdy = true;

foreach($this ->getMovements () as $movement) {

if(! preg_match('#(0[1 -9]|[12][0 -9]|3[01]) [-/](0[1 -9]|1[012])
[-/](19|20|21) ?\d\d#', $date))

$dmy = false;

if(! preg_match('#(0[1 -9]|1[012]) [-/](0[1 -9]|[12][0 -9]|3[01])
[-/](19|20|21) ?\d\d#', $date))

$mdy = false;

Figure 4.4: Identifying the date format using regular expressions

Figure 4.5: Railroad diagram of the regex used to match format d-m-Y

unnecessary duplication in the mappings table the transactor names are normalised be-
fore checking for an existing name, this normalisation was added to combat the various
different ways which banks store the transactor names which were discovered during
testing. The modifications included: padding with spaces, replacing spaces with under-
scores/tabs, or including non alphanumeric letters; some examples are shown in Table
4.3. Having normalised the input, the next step was to remove any numeric identi-
fiers which had been added and move that detail to another field. Examples of such
identifiers included store id’s for shops with multiple outlets and account numbers for
transfers between accounts, if this detail wasn’t removed a separate mapping would be
created for transactions referencing the same entity, leading to unnecessary duplication.
The identifiers were removed using a regex, expressed in Fig. 4.8 which only captures
numbers found at the end of the string requiring at least two digits, these additional
constraints were added to preserve transactors with numbers in their name, such as H3G

and SUPERMERCADO 3. The final step checks for existing GlobalMapping or UserMapping
objects in the database and if found associates that mapping with this transaction. If nei-
ther mapping’s are found a new UserMapping object is created, persisted and associated
with the transaction. Differing from the original plan, fuzzy matching1 of the transactor
name when searching for existing transactors is not performed as this functionality was
moved to the suggestion wizard. The full code for the ‘setTransactor‘ method is shown
in Fig. E.1.

1 Finding strings that approximately rather than exactly match

39 of 96

4.2. STATEMENT MANAGEMENT CHAPTER 4. IMPLEMENTATION

Figure 4.6: Railroad diagram of the regex used to match format m-d-Y

Figure 4.7: UI Prompt when the application is unable to decide an upload’s date format

4.2.3 Suggestion Wizard

The suggestion wizard (Fig 4.9) was added to the project in response to observa-
tions during lab usability testing. Originally the suggestions were only found on each
unmapped transactors page (Fig. 4.11) to speed up the process of mapping a reference
to an existing transactor. Users appeared to spend a lot of time manually categoris-
ing each individual transactor by searching their statement for an unknown transactor,
opening that transactors details and then filling in the appropriate forms or clicking on
a suggestion, following an activity diagram similar to Fig. 4.10.

The wizard was designed to streamline and speed up this process as well as making
it easier for the user to follow. Each unmapped transactor is displayed in turn, starting
with the one with the most transactions (encouraging the user to map the ones they shop
at more often first). On each step, the user can; follow the suggestions, manually map
the reference to an existing transactor, create a new transactor or ignore the reference
for now. A step-by-step view of this process is shown in section 5.2.

During the process feedback is displayed to the user using notifications that appear
over the wizard and are coloured according to validation style convention, with red warn-
ing of an error and green confirming success (Fig. 4.12). The notifications themselves
were implemented using the PNofity javascript library for jQuery which provides an API
for managing alerts send to the user. PNotify was chosen as it had native support for
bootstrap styles, which were already being used for the projects UI, and it was open
source licensed under the GPL3 [57].

By following the wizard users are able to quickly map the majority of their transac-

3GNU General Public License [56]

40 of 96

4.2. STATEMENT MANAGEMENT CHAPTER 4. IMPLEMENTATION

Raw Transactor Name Occurrences
TESCO STORES 5128 87
TESCO STORES 2977 68
TESCO_STORES 14
SACAT MARKS AND 33
SACAT MARKS AND 16
WILKINSON 22
WILKINSON 8
TO A/C 000000002 2

Table 4.3: Examples of the raw transactor names found on uploaded statements

Figure 4.8: Railroad diagram of the regex used to tidy the transactor name

tions in an easy to follow way, as can be shown by the activity diagram in Fig. 4.13.

Implementation

The wizard is powered by Ajax4, which sends requests to a backend RESTful API
which proves access to the unmapped transactors found for the user. The requests and
responses are sent as JSON5 which is supported natively by both PHP and JavaScript.
A GET request to /ajax/transactor/suggestions returns a collection of unmapped trans-
actors including associated examples which are then added to the UI using JavaScript.
Mapping (including following a suggestion) and creating a new transactor are both han-
dled by POST requests to the same API. Mapping sends a request to /ajax/transactor/map

containing the ID of the user mapping and global mapping and creation sends a request
to /ajax/transactor/create including the user mapping ID to associate with the new trans-
actor. Examples of the JSON communication are shown in F.

On the backend, all JSON serialisation is handled by implementing the JsonSerializable

interface on all objects that need to be JSON encoded. This allows the native function
json_encode($object) to correctly encode the object into JSON using the data returned
by the abstract method ‘jsonSerialize‘ defined in the interface. The final inheritance
diagram for the mapping, transactor and transaction objects is shown in Fig. 4.14.

4Asynchronous JavaScript and XML
5JavaScript Object Notation

41 of 96

4.2. STATEMENT MANAGEMENT CHAPTER 4. IMPLEMENTATION

Figure 4.9: Suggestion wizard UI

Figure 4.10: Activity diagram for mapping individual transactors

The Suggestions

The suggestions are made by searching for known global mappings, user mappings,
global transactors and user transactors6 that are similar to the reference name a sug-
gestion is being made for. This is done using the Natural Language Full-Text Search
functions provided by MySQL. These functions, including MATCH, use a Vector Space
Model to rank the relevance of a field relative to the input and signify this relevance us-
ing a decimal number, which means it can be treated as a standard field by the database
and used to order the results. [58].

When searching for suggestions the application finds the five most relevant mappings
or transactors, according to full text search, loads those objects from the database using
the ORM. As the ORM tool uses doesn’t have support for full text search a raw SQL
query was written that uses PDO’s7 prepared statements functionality to send the pa-
rameters to the database server, avoiding SQL injection. The query for finding global
transactor mappings as part of the GetCloseTransactorMappings method in the Global-
TransactorMappingPeer class is shown in Fig. 4.15, where :identifier is replaced by the

6In the order of preference
7PHP Data Objects extension for accessing databases

42 of 96

4.3. PREDICTION CHAPTER 4. IMPLEMENTATION

Figure 4.11: Suggestions shown on the Transactor (reference) page

Figure 4.12: Notifications shown during the suggestion wizard

server with the passed parameters.

4.3 Prediction

The key difficulty of implementing the prediction functionality was designing a data
structure that allowed predictions to be read by column or by row in order to generate the
table output shown in Fig. 4.16. Ordinarily a multidimensional array or a dictionary of
dictionaries would be used, however in this case it must be possible to access the data by
subcategory as well as by month or date. In order to allow accessing the data by month,
category and subcategory as well as being able to generate totals the data structure
shown in Fig. 4.17 was used. The TransactionCollection interface defines three methods,
getTotalValue(), getTransactions() and addTransaction(Transaction). By extending this
interface each level of the data structure can be treated in exactly the same way and the

43 of 96

4.3. PREDICTION CHAPTER 4. IMPLEMENTATION

Figure 4.13: Mapping transactors using the suggestion wizard

Figure 4.14: Inheritance diagram of JsonSerializable objects

entire PersonalBudget object can be passed to the template engine with no controller
logic or pre-calculation. Transactions are added to the PersonalBudget object and at
each layer of the data structure organised into the correct collection automatically. When
getting the transactions from any collection, the object calls the get getTransactions()

method on any sub-collection instances it holds and returns an intersection of the results.
The Budget object (representing expenditure or income) provides the getCategoryPrediction

() method which takes a month and a category and returns the systems prediction for
that month. It’s this method that builds and samples from the Markov Chain Models,
calculates the Weighted Arithmetic Mean, and chooses the Weighting Model which pro-
vides the least absolute error for the historical data in order to make the prediction. The
class also calculates the confidence interval which is displayed in the UI.

SELECT *, MATCH (: nameColumn) AGAINST (:name) AS 'score '
FROM :tableName

WHERE :transactorID IS NOT NULL

HAVING `score ` > :minScore OR :nameColumn = :name

ORDER BY `score ` DESC

LIMIT 5

Figure 4.15: SQL query selecting similar mappings using PDO

44 of 96

4.3. PREDICTION CHAPTER 4. IMPLEMENTATION

Figure 4.16: The budget overview screen where predictions are highlighted in red

The logic for these steps is split into separate classes to improve cohesion and the
overall process is shown in Fig 4.18.

In order to build the Markov Chain Model, an instance of, the TransactionMarkovChain
class takes a list of Transaction objects and counts the months where a transaction oc-
curs, storing this in an associative array. This matrix is read to generate a transition
table which represents the amount of time a transaction as transitioned from occurring
to not occurring and visa-versa. This transition table can be converted to a transition
matrix which represents the probability of such a transition occurring. An example tran-
sition table and matrix for a one of purchase are shown in Table 4.5 and 4.4. Considering
whether or not a transaction occurred in the previous month, a sample is taken from
the matrix. For example, if example event occurred last month for the probability of
the event occurring next month given that it occurred last month is 0.00 and so there
is a 0% chance the system will predict the event will occur next month. This process of
sampling is repeated up to 10, 000 times for each transaction in under one second and
the list of predictions is returned to the Budget class.

Didn’t Occur Occurred
Didn’t Occur 10 1
Occurred 1 0

Table 4.4: Transition table for a one off purchase

Having decided whether or not a transaction will occur the Budget class uses an
instance of TransactionWeightedAverageCalculator to estimate how much money would be
transferred if a transaction occurs. The weighted average calculator takes a list of Trans-

45 of 96

4.4. SECURITY CHAPTER 4. IMPLEMENTATION

Didn’t Occur Occurred
Didn’t Occur 0.91 0.09
Occurred 1.00 0.00

Table 4.5: Transition matrix for a one off purchase

action objects and returns an associative array containing the weighted average for each
transactor. To calculate the weighted averages the calculator first selects the best weight-
ing model for the users spending pattern in the specified category and uses the selected
function to calculated the averages for each transactor in the category.

Combining the output of the MCM’s and the weighted average calculator the pro-
duces the systems expenditure prediction for the considered category, Table 4.6. This
is calculated for each sample taken from the MCM and the results are passed to an in-
stance of the PredictionEvaluator to produce an average and confidence interval, which
is ultimately displayed on the UI.

Transactor Prediction Weighted Average Total
Tesco No £33 £0
Sainsbury’s Yes £65 £65
Amazon No £3 £0
Argos No £17 £0

Total £65

Table 4.6: Combining samples from the MCM and the weighted averages

4.4 Security Considerations

The security considerations outlined in section 3.3, were implemented throughout the
project including site-wide SSL, password entropy requirements, password salting and
hashing and personal identifiable information encryption. In addition the application
implements additional protection against account hijacking and login throttling to reduce
the overall effectiveness of brute force attacks.

An overview of the techniques used during login and on every page request is shown
in Fig. 4.19 and 4.20.

4.4.1 Account Hijacking

The users session8 identified by the session ID in the users cookie, includes a finger-
print of the users browser user agent, an additional user session identifier, the last time
they performed an action as well as the users ID. These identifiers are validated on every
page load and if incorrect the session is invalidated, to prevent further use, and the user
is logged out.

8Stored server side

46 of 96

4.4. SECURITY CHAPTER 4. IMPLEMENTATION

The fingerprint and session identifier provide an additional layer of protection against
account hijacking and recording the last action time means that if a user leaves their
computer idle or forgets to logout their session cannot be used after a certain amount of
time has passed.

The user session identifier is generated each time a user logs in, and stored in their
user record. On each page load the recorded identifier is compared to the current one
found in the users session, if they don’t match the user must have an old session and
their session is no longer valid. This prevents use of an old session if the user has logged
in elsewhere, such as logging in from another computer or mobile device.

Fingerprinting relies on the user agent string (UAS) which sent in the HTTP head-
ers to the remote server by the users browser and contains information including their
current browser version and operating system, example UAS’ are shown in Fig. 4.21.
It’s important to note that although the string can be manipulated using a browser ex-
tension or by modifying the string sent in the HTTP header the average user would not
be doing this and for the purposes of fingerprinting the actual value is not of particular
importance. As long as the fingerprint doesn’t change value between requests, implying
the user is logging in from a different device using the same session (as would be seen
during account hijacking), the user is kept logged in.

The use of browser fingerprinting to improve session security was suggested and
evaluated by Unger, Mulazzani, Fruhwirt, et al. who concluded that the technique
was successful in preventing various attacks and hijacking attempts, including XSS and
passive sniffing . The paper also demonstrated that FireSheep and WhatsApp Sniffer,
discussed in sestion 2.3.1 are thwarted by fingerprinting [59].

The actual fingerprint taken by the project is similar to that suggested in the paper.
Consisting of all of the alphabetic strings found in the UAS concatenated and hashed.
Only alphabetic strings are used as the likely-hood of a user updating their browser or
operating system is high, particularly considering the automatic update feature which
is common in many modern browsers [60], [61]. The code used to build the browsers
fingerprint is shown in Fig. 4.22.

If a users browser fingerprint changes, their user session ID doesn’t match the one
in the database, or the time since their last action is over the threshold, their session is
both unset9 and destroyed10 and their cookie which was used to identify the session to
the server is written over11. This will cause them to be logged out and redirected to the
login page. For convenience the page they were previously accessing is stored and they
will be returned to it after successfully logging in.

Destroying the session in this way means that even if an attacker had successfully
performed a session hijack before the destruction occurred the cookie that was stolen is
no longer valid and cannot be used for authentication.

9Frees all session variables [62]
10All server side data associated with the session is deleted [63]
11Required to ‘kill the session altogether’ [63]

47 of 96

4.4. SECURITY CHAPTER 4. IMPLEMENTATION

4.4.2 Brute Force Attacks

Login throttling was implemented using a database table containing every failed
login, the time of the login attempt and for reference the IP address and user the failed
login attempt was for.

If a user enters an incorrect username or password an entry is added to the failed
login attempt table and the application checks up how many failed password attempts
have occurred in the last threshold period12, see Fig E.3. If the number of attempts is
larger than the maximum failed logins per period the user must wait for a few seconds
before they can try to login again, that is, all login attempts will fail and the UI will
prevent login to avoid users becoming confused.

By enforcing a wait time of only a few seconds it’s likely a normal user would not
notice the throttling as they would take a few seconds to login, but an attack would be
seriously hampered. The throttling is applied across all user accounts and IP addresses
to ensure use of a botnet to send a distributed brute force attack is also very impractical
[64].

In the future the login throttling system could be extended to take into account the
average number of logins per day and automatically adjust the throttling thresholds
appropriately.

12Defined in a config file to allow easy modification

48 of 96

4.4. SECURITY CHAPTER 4. IMPLEMENTATION

Figure 4.17: Storing a Personal Budget by date and category

Figure 4.18: System activity diagram when making a prediction

49 of 96

4.4. SECURITY CHAPTER 4. IMPLEMENTATION

Figure 4.19: Steps performed during a user login

Figure 4.20: Steps performed during every page load request

Mozilla/5.0 (Macintosh; Intel Mac OS X 10 9 2) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/34.0.1847.131 Safari/537.36

(a) Google Chrome running on OS X
Mozilla/5.0 (iPad; CPU OS 5 1 like Mac OS X; en-us) AppleWebKit/534.46 (KHTML, like

Gecko) Version/5.1 Mobile/9B176 Safari/7534.48.3

(b) Google Chrome running on OS X
Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)

(c) Internet Explorer 10 on Windows 7
Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:24.0) Gecko/20100101 Firefox/24.0

(d) Firefox 24 on Linux (Ubuntu)

Figure 4.21: Example User Agent String’s

$parts = preg_split('#[^A-z]+#', $_SERVER['HTTP_USER_AGENT ']);
$fingerprint = "";

foreach($parts as $part) {

if(strlen($part) > 1 || strlen($fingerprint) < 2)

$fingerprint .= $part;
}

Figure 4.22: Generating a browsers fingerprint using the user agent string

50 of 96

Chapter 5

Results

5.1 System Walkthrough

Below, an overview of the systems behaviour is given following the standard users use
case in the form of a walk through. For further exploration of features the application
can be found online at https://secure.pezcuckow.com/ where an account can be
registered for access.

Having logged in, the application starts on a welcome screen (Fig. 5.1) which fills
with information over time, for now the system prompts the user to upload a bank
statement. The user bar appears at the top of every page1 which identifies the currently
logged in user by name and a avatar pulled using from Gravatar[65], it provides quick
access to the user settings and allows the user to logout.

On the left hand side of the screen is the main menu (Fig. 5.2), which is also displayed
on all pages. It indicated the currently open page in orange, in theme with the rest of
the website, and on hover with a mouse it highlights the chosen page by inverting the
colours to make the selection clear.

1For clarity both the background and user bar are not shown in the following screenshots

Figure 5.1: Empty welcome screen

51

https://secure.pezcuckow.com/

5.1. SYSTEM WALKTHROUGH CHAPTER 5. RESULTS

Figure 5.2: Application main menu

Figure 5.3: The upload statement screen before any uploads

5.1.1 Statement Upload

Following the advice of the welcome page, the user opens the upload screen (Fig.
5.3). As this is the first time user has opened this screen an information prompt is
shown which explains the purpose of the page and reminds them that the files to upload
can usually be found on their current banks Internet banking system.

After downloading a statement from their account, the user uploads it by clicking
on the select file button and browsing their computer for the file. After confirming their
selection the state of the file field changes (Fig. 5.4) to allow checking of the uploaded
file and to make it clear one is currently selected. Clicking the primary2 upload button
uploads the file to the server, which processes it, and refreshes the page.

On the new page (Fig. 5.5), the state of the file upload is indicated above the form,

2Indicated in orange

52 of 96

5.1. SYSTEM WALKTHROUGH CHAPTER 5. RESULTS

Figure 5.4: UI update following a file selection

Figure 5.5: The upload page, following successful file uploads

53 of 96

5.2. SUGGESTION WIZARD CHAPTER 5. RESULTS

Figure 5.6: Upload confirmation following a duplicate file

containing a summary of the file uploaded and the uploaded file is highlighted in the
recent uploads list, which includes an option to view the transactions uploaded as part
of that statement. The highlight colour, green, was used to indicate success.

In addition a further piece of information has been added to the page introduction,
the most recent transaction the system knows about is marked in bold, to save the user
time when selecting a statement to download.

If the user uploads a file containing no new transactions (all previously uploaded),
the confirmation prompt indicates this and it uses the colour yellow to indicate a warning
(Fig. 5.6).

On returning to the welcome screen, the dashboard is now full of information3 (Fig.
5.7). It provides an overview of the average income and outgoings per month, along
with an indication of the users ‘profit’ since the first transaction the application knows
about.

Most notably, the dashboard also includes an interactive pie chart, which gives an
indication as to which categories most of their money is spent. On hover the chart gives
the actual percentage of the overall expenditure, and on click opens a page which lists
all the transactions in that category.

If the system has suggestions for uncategorised transactors, a notification suggesting
they visit the category (or suggestion) wizard is shown.

5.2 Suggestion Wizard

The suggestion wizard steps the user though all unmapped and uncategorised refer-
ences (Fig 5.8). It starts with the transactor they frequent the most often and prompts
them to provide the mapping, either by following a suggestion, creating a new transactor
or manually searching for a match.

Completing the mapping, forwards the user to the next unmapped reference, provid-
ing confirmation the new mapping has been created as a notification which disappears
after a few seconds 5.9, and the process repeats.

The suggestions wizard went through several iterations of user interface enhance-
ments, designed to make it easier to use. For example, when creating a new transactor
(Fig. 5.10) the system automatically fills in the name field with a pre-formatted version
of the reference and the category selection is performed through an upgraded dropdown
menu. The dropdown has been upgraded from the standard dropdown found on many

3Fictional information used throughout out this walkthrough

54 of 96

5.2. SUGGESTION WIZARD CHAPTER 5. RESULTS

Figure 5.7: Welcome screen following successful statement uploads, including expendi-
ture per category

Figure 5.8: Suggestion wizard main screen, showing suggestions for a reference

55 of 96

5.2. SUGGESTION WIZARD CHAPTER 5. RESULTS

Figure 5.9: Notifications shown after completing a successfully

Figure 5.10: Creating a new Transactor and selecting a category

Figure 5.11: Selecting a category using the autocomplete feature

56 of 96

5.3. TRANSACTION OVERVIEW CHAPTER 5. RESULTS

Figure 5.12: Searching for an existing Transactor using autocomplete

websites using client side javascript and provides auto-completion, fuzzy matching, as
well as the ability to select a category grouping, for example entertainment over Movies
& DVD’s (Fig. 5.11. A similar dropdown is also used when searching for an existing
transactor (Fig. 5.12.

After completing the wizard by mapping or ignoring all the unmapped references,
the user is congratulated and a hint is given that they should head to the transaction
summary page, which includes their monthly expenditure predictions.

5.3 Transaction Overview

The transaction overview screen shows spending per month in each of the categories
and a the prediction for next month made using the machine learning techniques outlined
in section 3.2 (Fig. 5.13). At the top of the screen a summary of the total income,
expenditure and net profit for each month is shown. The rest of the page is split into
two sections, representing money coming into and leaving the users account. In the
example shown the user hasn’t mapped all of their references and so some transactions
are listed under uncategorised, a hint is placed at the top of the screen reminder users
to visit the category wizard.

.png
Clicking on any of the rows in the table reveals the subcategories and their associated

values that are being used to produce the row, using an animated ‘slide-down’ effect 5.14.

5.4 Viewing Statements

The application also provides an easy way to view historical spending organised
by month (Fig 5.15). The transactions in each month can be grouped by category,
transactor or date to give a more detailed idea of how money is being spent (Figs. 5.16
and 5.17).

A user can also view particular transactor or reference, which includes the references
category and a summary of recent transactions (Fig. 5.18). If the reference is not yet

57 of 96

5.4. VIEWING STATEMENTS CHAPTER 5. RESULTS

Figure 5.13: The transaction overview screen, which shows expenditure per month and
a prediction (in red) for next month

Figure 5.14: The subcategories being used to make up a category in the overview

Figure 5.15: The statement view

58 of 96

5.4. VIEWING STATEMENTS CHAPTER 5. RESULTS

Figure 5.16: Grouping the statement by category

Figure 5.17: Grouping the statement by transactor

59 of 96

5.4. VIEWING STATEMENTS CHAPTER 5. RESULTS

Figure 5.18: Recent transactions at a particular transactor

Figure 5.19: Viewing an unmapped reference

60 of 96

5.5. RESPONSIVE DESIGN CHAPTER 5. RESULTS

mapped, options similar to those shown in the suggestions wizard are listed enabling
them to map the reference correctly (Fig. 5.19).

5.5 Responsive Web Design

A key feature of the application is being able to access it at any time from any device,
particularly when taking into account the rapid increase in the use of mobile devices.
Interacting with a website on a smartphone or tablet is not the same as interacting using
a computer, due to the smaller screen size and use of touch over a mouse.

Forbes reported that 24% of their 2013 website visits came from mobiles and 13%
from tablets, down from a total of 15% in 2012. particularly with the high percentage
of website visits coming from mobile devices [66].

In order to ensure the project is accessible from a variety of different devices the core
UI uses Responsive Web Design (RWD) to layout the website differently depending on
the screen size of the device to ensure an optimal viewing experience.

The differences depending on the device are highlighted in Figs. 5.20-5.23.

Figure 5.20: Layout on a standard laptop

61 of 96

5.5. RESPONSIVE DESIGN CHAPTER 5. RESULTS

Figure 5.21: Layout on a tablet in landscape

Figure 5.22: Layout on a tablet in portrait
Figure 5.23: Layout on a smartphone

62 of 96

Chapter 6

Testing and Evaluation

The evaluation of the application indicates that these three objectives have been
met. Preliminary research demonstrates that enjoyed using the application and that
the majority of participants would use it in the future if implemented as a full product.
Testing with participant data shows that the average absolute error of the prediction
engine was PERCENTAGE% for users with over three months historical information.
Preliminary penetration testing, using both white-box and black-box testing indicated
that the security protections put in place are effective. However, the evaluation of the
project was limited, due to the size of the user base, discussed further in section 7.1.

6.1 During Development

Though-out the development of the project, predominantly after each feature was
implemented and before a new iteration was started the applications functionality was
tested through face to face conversations, observations and unit testing.

6.1.1 Acceptance Testing

As noted throughout the report, the application was regularly tested by potential end
users and the developers during lab observations where the user was asked to complete
a task on the website while describing what they were doing.

During the testing, common pain points were identified and these were used to decide
on the future features, either to improve the user experience on the website, making it
easier to use, or to support a new use case.

Example modifications, made as a result of these observations, include the dropdown
menu autocompletion when creating and mapping transactors, the hints that appear
throughout the website to guide the user onto the next task, and the suggestion wizard.

Towards the beginning of the project these meetings were used to evaluate and update
the design of the user interface, which went through several different designs, and to
receive qualitative feedback from the users (Fig. 6.1).

63

6.2. AFTER DEVELOPMENT CHAPTER 6. TESTING AND EVALUATION

Figure 6.1: A few iterations of the user interface designs

6.1.2 Unit Testing

High risk classes, including the Budget, the QIF and OFX Parsers implementing the
TransactionFileParserInterface, and those implementing the TransactionCollectionInter-
face were unit tested to ensure the functionality of the classes was not affected when
implementing new features or refactoring the code.

These classes were selected as the core functionality of the application relied on their
behaviour and they were coupled to the most other classes, for example the Budget
object was responsible for holding a collection of Transactons in the tree data structure
described in section 4.3 and performed the majority of the prediction functionality, hold-
ing references to the TransactionMarkovChain, TransactionWeightedAverageCalculator
and PredictionEvaluation.

Due to time constraints and the complications of testing data driven classes, both
the number of unit tested classes and methods covered was limited, this is discussed
further in section 7.1.

6.2 After Development

Once development of the project was halted the application was tested in the three
following the three sections outlined through the report. The statement management
functionality was assessed using a questionnaire posed to research participants that were
given access to the system, the prediction algorithms were evaluated using the sample
data provided by the research participants and the security of the application was eval-
uated using penetration testing. Unfortunately the reliability of the results for both
the statement management and prediction is questionable due to the limited number of
research participants and questionnaire responses, see section 7.1.

6.2.1 Statement Management

The questionnaire posed to the research participants was split into three sections, a
full copy of the questions can be found in Appendix G.

The first made a series of statements and asked the respondent to answer on a five
point scale, ranging from 1, strongly disagree to 5, strongly agree. The questions in
this section had four main types, and were selected following the structure of the Stan-
dardized Universal Percentile Rank-Questionnaire which is used by companies including

64 of 96

6.2. AFTER DEVELOPMENT CHAPTER 6. TESTING AND EVALUATION

PayPal to assess their websites [67]. Questions on usability focused on how easy users
found navigation of the website, locating the information they needed, and whether they
enjoyed using it. The potential loyalty of the participants was judged by using the likely
hood of a user recommending the site to their colleagues and friends or returning to the
site in the future.

The second section focused on task completion, participants were asked to complete
a task and then rate the how difficult or easy they found that on a seven point scale. This
section was designed to assess the functionality of the website and to identify additional
pain points. One scale question was asked per task as research suggests that use of
a single question performs just as well as breaking the task down into sub-questions
[68], [69], however a free text field was included with each task to obtain qualitative
information on the reasons behind the answer.

In final section was used to identify features of the the website that users favoured and
those they disliked in order to backup the points reviewed in section two, all questions
were answered in free text fields.

In the first section, answered on a 1-5 scale, Loyalty was the question type with
the highest average score of 4.10 and a standard deviation of 1.66, which indites some
uncertainly, further analysis of the answers, shown in Fig. 6.2, shows that the majority
of answers fell between the first and third quartiles and that the median value was 5,
indicating that the result is being negatively skewed and affected by outliers at the low
end. The statement with the highest average level of agreement was ‘If completed, I
would visit this site in the future’ with an average answer of 4.20, though the standard
deviation again quite high at 1.79. Hopefully, this implies that the automation of bud-
get management was of useful to the majority of participants and has potential as a
real world product. The usability questions received the lowest score, with an average
agreement of 3.50 which is slightly agree. The box plot for the usability questions is
shown in Fig. 6.3 which indicates that the mean is a fair measure of this data, though
the data is negatively skewed, it also shows that, although the median answer was 4.00
answers ranged between 1 and 5. The questions with the lowest agreement level, overall,
were both within usability. ‘The website is easy to use’ and ‘I am able to find what I
need quickly’ which both scored 3.00, with a standard deviation of 1.41 and 1.22 respec-
tively. On the scale a 3 is neutral, the respondents neither agree or disagree with the
statement. The relatively low agreement level of the usability questions was a surprise.
It was believed that the hints shown throughout the site and the single navigation menu
had improved the usability of the website, however it’s clear this area may need extra
work.

The responses to the task difficulty questions, shown in Fig. 6.4, indicated that the
most difficult tasks to complete were downloading a the users statement from their online
banking account and viewing their monthly predictions. Downloading statements may
be outside the control of the application, but comments including ‘difficult selecting the
dates that you want’ and ‘not sure which download option to choose’ indicate that more
detailed guidance could be provided to the users when they’re told to download their

1The whiskers indicate the minimum and maximum values

65 of 96

6.2. AFTER DEVELOPMENT CHAPTER 6. TESTING AND EVALUATION

Figure 6.2: Box plot of Loyalty question responses1

Figure 6.3: Box plot of Loyalty question responses

statement. The relatively low score of the monthly prediction section of the website,
is supported with comments including ‘too much information’ and ‘very messy screen’,
suggesting that further work should be done to improve it’s layout and to reduce the
amount of detail shown. Overall the responses to the task difficulty questions are posi-
tive, with an average difficulty rating of 5.7, indicating that website is relatively easy to
use.

The textual responses to the questions in the final section were in line with the
task difficulty measures, with difficult tasks noted as the least useful. Interestingly, the
pie chart breaking down the expenditure per category was selected as the most useful
feature by 100% of the respondents who answered the question, which was matches the
background research for existing applications.

6.2.2 Prediction

By taking the test participant data, it was possible to evaluate the prediction accu-
racy of the application. Users with more than four months history were selected and
the data was split into two halves. All but the most recent complete month was fed to
the prediction engine and used to make a prediction for total spending and income in
the known month. By comparing the recorded predictions to the actual values for that
month it was possible to calculate the absolute and percentage error.

Overall the system performed with 16.7% average error, performing with a lower
average error of 14.6% for income and a slightly higher error of 18.4%. It is likely that
income has a lower error as the income is often regular and for similar amounts. However,
as only 7 of the participants had uploaded more than four months data the scope of the
testing was limited and the reliability of the results is questionable. In addition, three

66 of 96

6.2. AFTER DEVELOPMENT CHAPTER 6. TESTING AND EVALUATION

Figure 6.4: Responses to the task difficulty questions, the standard deviation is shown
as error bars

of the records were identified as outliers as the absolute error fell significantly outside of
the inter quartile range, and not included in the averages. Outliers were identified using[
Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)

]
where Q1 and Q3 were the upper and lower

quartiles. The full results of the testing data are shown in Table 6.1 and the quartiles
are shown in Table 6.2, records that fell outside of the bounds and were ignored when
calculating the averages are indicated in italics. It is likely that these outliers were
caused by sudden changes in spending pattern or that the prediction is being affected
by significant expenditure or income in January.

6.2.3 Security

The security of the application was measured using white-box and black-box pen-
etration testing. The author, who had a working knowledge of the internals of the
application and access to the source code, performed the white-box testing. They at-
tempted to break into the account of someone using the website through the use of
session hijacking outlined in subsection 2.3.1, even after disabling the encryption of the
users session by temporarily allowing allow cookies to be sent over HTTP, and gaining a
copy of the cookie the account couldn’t be accessed as the users session was invalidated
once the session hijack was detected by the fingerprinting mechanism. Even after the
headers of the target user were cloned, the users session ID didn’t match the one found
in the database and the session was once again invalidated. Black-box penetration test-

67 of 96

6.2. AFTER DEVELOPMENT CHAPTER 6. TESTING AND EVALUATION

February
User Type Prediction (£) Actual (£) Absolute Error (£) Error (%)

1 Income 1620 1409 211 15.0
Expenditure 1710 2603 893 34.3

2 Income 2080 209 1871 895.2
Expenditure 1678 1633 45 2.8

3 Income 1187 1200 13 1.1
Expenditure 1227 943 284 30.1

4 Income 864 881 17 1.9
Expenditure 659 814 155 19.0

5 Income 1060 732 328 44.8
Expenditure 1101 1309 208 15.9

7 Income 243 100 143 143.0
Expenditure 383 51 332 651.0

8 Income 1008 914 94 10.3
Expenditure 1113 1029 84 8.2

Average 13.7

Table 6.1: The results of the prediction evaluation test, which compared predictions and
actual values

Quartile Bound
Lower Bound 8.7 -172.6
Second Quartile 17.5
Upper Bound 111.5 265.8

Table 6.2: First, second and third quartiles for the prediction evaluation test

ing was performed by a peer of the author, who has experience in penetration testing.
The unsucesfully tried SQL injection by modifying the parameters sent in the sugges-
tion wizards AJAX requests before uploading a bank statement that contained cross
site-scripting (XSS) code designed to steal the users cookie. The uploaded statement
was parsed successfully and all of the XSS was escaped, preventing the code injection.
Finally, the tester attempted to upload malicious files in an attempt to break the upload
feature, in all cases the Although this demonstration isn’t able to conclude that the
application is secure and resilient to all attacks, it does demonstrate that more common
attacks including those outlined in section 2.3 are prevented.

68 of 96

Chapter 7

Conclusions

The project set out to build an application that made personal finances easier to
manage through the automation of the common steps that people go through when
making a budget.

Existing finance applications were researched, highlighting the advantages and dis-
advantages of each, as well as identifying the features that users found useful through
the use of reviews. A key piece of the functionality, the prediction engine, was discussed,
investigating a combination of existing techniques used to forecast financial spending,
including MCMs and Weighted Arithmetic Means. The ethical implications of storing
high risk personally identifiable information was assessed and considered with reference
to application security and strong security practice. This research was then used to
decide on the functionality of the application, the design and implementation of the
prediction engine and used to ensure high security standards were met throughout the
application.

Specific design and implementation challenges were discussed, highlighting the key
background and technical knowledge that was gained in order to overcome the challenges
faced.

The aim of the project was to build an application that implemented an intuitive way
to view and manage personal finances and accurately predict a users future transactions
based on their history, while upholding the high security expectations of such a service.
The final application was reviewed, following the usage pattern of the average user, to
outline the key features implemented and to give an idea of how it works.

The evaluation of the application indicates that these three objectives have been
met. Preliminary research demonstrates that users enjoyed using the application and
indicates the majority of participants would use it in the future if released as a full
product. Testing with participant data shows that the average percentage error of the
prediction engine was 16.7% for users with over four months historical information.
Preliminary penetration testing, using both white-box and black-box testing indicated
that the security protections put in place are effective. However, the evaluation of the
project was limited, due to the size of the user base, discussed further in section 7.1.

69

7.1. LIMITATIONS CHAPTER 7. CONCLUSIONS

7.1 Limitations

The main limitation of the project was the scope of the test participants. A total of
20 testers signed up to participate in the project during it’s development, uploading at
least one month of transaction data. However, only 7 of these individuals uploaded more
than four months of transaction history, which was the threshold for using training and
testing to select a best fit weighting model. In addition the majority of the participants
were peers of the author, which meant that the majority of evaluation and testing was
performed using students.

More extensive testing using a broader spectrum of testers, who may require a variety
of different features, or use the system in a different way, may provide a greater level of
evaluation for the system.

A key difficulty when seeking participants were their concerns regarding data secu-
rity and trusting the researchers with their personal information. It it hoped that by
publishing the level of concern and detail that has gone into the design of the security
of the application, including encryption of their personally identifiable information, that
the effects of this concern can be limited.

If the project were to continue, a more open approach for recruiting participants could
be taken, such as seeking alpha testers and feedback in online forums and news groups.
This should lead to both larger numbers of participants and a wider variety in the users
background to give a fairer picture of potential users. Due to the variety of formatting
already seen in participant data, it may be appropriate to limit the participants to the
UK. A continued concern would be the security of the application when opening it up
to users on the Internet, therefore this would need to be addressed.

During the testing and evaluation there were many features suggested by users to im-
prove the application to their individual preferences. Due to time restraints the majority
of these were not implemented and it was decided it was more imperative to focus on
the most important and most frequently requested features first. Further development
could include the additional requested features to suit a greater variety of users.

Although the key functionality of the application was unit tested, tests of the business
logic in the prediction engine and on key objects was limited. This limitation was due
to the heavy reliance on data, and because the engine performs differently depending
on the users history. To test this functionality in the future data with pre-calculated
attributes would be need to be prepared and a separate database access for storing this
testing data would need to be implemented.

7.2 Further research

Due to the nature and size of this project a wide variety of further research oppor-
tunities have been highlighted.

70 of 96

7.2. FURTHER RESEARCH CHAPTER 7. CONCLUSIONS

7.2.1 Model Selection

Currently, the application selects most appropriate weighting model to use for each
users transactions by evaluating the pre-defined weighting models via their historical
data, and selecting the one with the least total overall error.

User Classification

Given the wealth of information the application holds about the users, higher accu-
racy could potentially be achieved by classifying each user. The users could be classified
in two different ways; using pre-defined groups, or using cluster analysis.

To split the users into existing groups, the researchers could identify groups that
they believed would exhibit similar spending patterns and characteristics. Users would
identify which group they felt they fit into when signing up and this information would
be used to define the characteritics of each group. Having chosen features that identify
each group, the researchers could automatically classify the users without prompting
them

Alternatively, the use of cluster analysis could be employed to determine the number
of groups, as well as the members of groups. The objective of the clustering would be to
group users that exhibited similar spending patterns together, so those that were most
similar were together and more similar to those in other clusters.

Having classified the users, the parameters in the prediction engine could be config-
ured for each individual group rather than by user. In addition, it would allow similar
users to be compared, which would allow statements such as ‘users similar to you spend,
on average, 10% more’ to be made, and could perhaps be used to make savings sugges-
tions to each user.

Further research could investigate the reliability of the classification using different
clustering algorithms and whether configuring the prediction engine per group leads to
better results than per user.

Model Selection

Weighting models were currently selected by category. The users total transactions
per month in a particular category were evaluated and the weighting model with the
best fit is chosen for that category. Transactions were considered by category and by
month. Data was split by category which was chosen as the number of transactions in
each subcategory was low, and preliminary experimentation showed that sub-categories
would suit the same model as their category. Using months as the time period was
selected as the majority of participant data contained regular monthly transactions such
as household and mobile phone bills, and so considering the transactions at smaller time
steps led to errors in the Markov Chain Model as the probability of a transaction not
occurring increased.

However, different time periods and methods of splitting the data could be investi-
gated. For example transactions at each individual transactor could be assigned their
own model, or all spending below a certain value could use the same model. The time

71 of 96

7.2. FURTHER RESEARCH CHAPTER 7. CONCLUSIONS

x̄ =
∑n−1

t=0 w(t)×xt∑n−1
t=0 w(t)

Figure 7.1: Weighted arithmetic mean

periods used to build the model, could be by month, weeks, days or perhaps even by
day of the week. Use of a time period such as a day of the week would result in a more
complected Markov Chain Model where samples such as ‘given that the last purchase
was on a Wednesday’ could be taken.

Further research could investigate the effects of using different grouping methods and
time periods on the overall accuracy of the predictions.

7.2.2 Alternative Forecasting Techniques

The system currently uses techniques adapted from exponential smoothing to forecast
and predict the value of a future transaction. Currently this is limited to a weighted
arithmetic mean in the form shown in Fig. 7.1. Use of a mean to forecast the value of
the next period performs poorly when there is a trend in the data [21].

Second order or double exponential smoothing can be used to take into account
trends and seasonal changes in data, such as the average value of an individuals weekly
shop increasing over time, or the increase of purchases during Christmas. Double expo-
nential smoothing involves two steps, calculating the weighted mean as before, and then
adjusting that mean by the difference between the previous value and it’s associated
prediction, shown in Fig. 7.2, the comparison between the weighted mean and second
order forecasting transaction that is increasing in value by 10, for each time period is
shown in Fig. 7.3. Triple exponential smoothing extends the trend calculation to include
a seasonal index. Assuming at least one complete seasons data is available the value of xt
of scaled by this seasonal index, which is calculated using by taking the average value of
this period historically and dividing it by the average value for the year that the period

occurred or St = xt
x̄p

and x̄p =
∑p

i=1 xi

p where p is the number of periods in a year, and xi
is the value of the period i in the year considered. Fig. 7.4 shows the performance on
some data that follows a similar trend to the previous year [20], [22].

Further research could investigate the effect of applying double order and triple
exponential smoothing to forecast the values of transactions on the final prediction and
how seasonal indexes could be calculated. Seasonal indexes, for example, could be
calculated per transactor, category, user or globally across the application. The research
would need access to historical transaction data for the users to be able to make these
assessments.

7.2.3 Learning the Scaling Parameters

It was mentioned in section 3.2.3 that the speed of the decay in the weighting func-
tions could adjusted by using a scaling constant. Instead of choosing the best weighting
model from a pre-defined selection, the application could apply non-linear optimisation

72 of 96

7.2. FURTHER RESEARCH CHAPTER 7. CONCLUSIONS

x̄t = α(t)× x̄t + (1− α(t))(x̄t−1 + bt − 1)

bt = α(t)(x̄t − x̄t−1) + (1− α(t))bt−1

Where α(t) = w(t)∑n−1
t=0 w(t)

representing the final weight

In general, the starting values are set as x̄1 = x1 and b1 = x2 − x1

Figure 7.2: Calculating the second order weighted arithmetic mean

Figure 7.3: Comparison of first and second order forecasting when predicting a trend

Figure 7.4: Using third order forecasting on data with a previous season

73 of 96

7.2. FURTHER RESEARCH CHAPTER 7. CONCLUSIONS

techniques to adjust the rate of the decay, and select a customised model for each user.
Further research could investigate different implementations of these optimisation

techniques, and how the use of custom models affects the prediction accuracy for each
user.

74 of 96

References

[1] C. Gore, “The global recession of 2009 in a long-term development perspective,”
Journal of International Development, vol. 22, no. 6, pp. 714–738, 2010.

[2] A. Barnard, “The economic position of households, q1 2012,” Office Of National
Statistics, 2012. [Online]. Available: http://www.ons.gov.uk/ons/rel/hsa/
the-economic-position-of-households/q1-2012/art---the-economic-

position-of-households--q1-2012.html (visited on 04/08/2014).

[3] The Wall Street Journal. (2013). The experts: is creating a personal budget a good
idea?

[4] Think Local Act Personal. (2013). 2nd national personal budget survey. L. Boyd,
Ed., [Online]. Available: http://www.thinklocalactpersonal.org.uk/Latest/
Resource/?cid=9503.

[5] BBC News. (2010). Debit card spending in uk overtakes cash for first time, [On-
line]. Available: http://www.bbc.co.uk/news/business-11901953 (visited on
04/09/2014).

[6] Lloyds Bank. (2014). Lloyds bank - private banking - internet banking, [On-
line]. Available: http://www.lloydsbank.com/private- banking/contact-

us/internet-banking.asp (visited on 04/20/2014).

[7] Mint. (2014). What is mint, Intuit, Inc, [Online]. Available: https://www.mint.
com/what-is-mint/ (visited on 04/20/2014).

[8] Lloyds Bank, Ed. (2014). Money manager, The free, easy way to keep track of your
money, [Online]. Available: http://www.lloydsbank.com/online- banking/

benefits-online-banking/money-manager.asp (visited on 04/09/2014).

[9] Money Watch. (2011). Lloyds tsb money manager, [Online]. Available: http://
money-watch.co.uk/7992/lloyds-tsb-money-manager (visited on 04/18/2014).

[10] ‘Deals’ et al. (2011). Anyone tried money manager at lloyds tsb? MoneySavingEx-
port.com Forum, [Online]. Available: http://forums.moneysavingexpert.com/
showthread.php?t=3114854 (visited on 04/21/2014).

[11] Stack Overflow Users. (2010). Banking api/protocol, Stack Overflow, [Online].
Available: http://stackoverflow.com/questions/3469628/banking- api-

protocol (visited on 04/19/2014).

75

http://www.ons.gov.uk/ons/rel/hsa/the-economic-position-of-households/q1-2012/art---the-economic-position-of-households--q1-2012.html
http://www.ons.gov.uk/ons/rel/hsa/the-economic-position-of-households/q1-2012/art---the-economic-position-of-households--q1-2012.html
http://www.ons.gov.uk/ons/rel/hsa/the-economic-position-of-households/q1-2012/art---the-economic-position-of-households--q1-2012.html
http://www.thinklocalactpersonal.org.uk/Latest/Resource/?cid=9503
http://www.thinklocalactpersonal.org.uk/Latest/Resource/?cid=9503
http://www.bbc.co.uk/news/business-11901953
http://www.lloydsbank.com/private-banking/contact-us/internet-banking.asp
http://www.lloydsbank.com/private-banking/contact-us/internet-banking.asp
https://www.mint.com/what-is-mint/
https://www.mint.com/what-is-mint/
http://www.lloydsbank.com/online-banking/benefits-online-banking/money-manager.asp
http://www.lloydsbank.com/online-banking/benefits-online-banking/money-manager.asp
http://money-watch.co.uk/7992/lloyds-tsb-money-manager
http://money-watch.co.uk/7992/lloyds-tsb-money-manager
http://forums.moneysavingexpert.com/showthread.php?t=3114854
http://forums.moneysavingexpert.com/showthread.php?t=3114854
http://stackoverflow.com/questions/3469628/banking-api-protocol
http://stackoverflow.com/questions/3469628/banking-api-protocol

REFERENCES REFERENCES

[12] ——, (2010). Is there an api to get bank transaction and bank balance? Stack
Overflow, [Online]. Available: http://stackoverflow.com/questions/7269668/
is-there-an-api-to-get-bank-transaction-and-bank-balance (visited on
04/20/2014).

[13] K. Purcell, “Half of adult cell phone owners have apps on their phones,” Pew
Internet & American Life Project, 2011.

[14] iTunes. (2013). Top 10 apps - finance, Apple, [Online]. Available: http://www.
apple.com/euro/itunes/charts/apps/top10appstorefinance.html (visited
on 04/20/2014).

[15] SpendeeApp, Ed. (2014). Spendee - see where your money goes, [Online]. Available:
http://www.spendeeapp.com (visited on 04/09/2014).

[16] S. Flückiger. (2013). Budgt, [Online]. Available: http://www.spendeeapp.com
(visited on 04/09/2014).

[17] BlueTags, Ed. (2014). Pocket expense, [Online]. Available: http://www.bluetgs.
com/Home.aspx (visited on 04/09/2014).

[18] P. E. Pfeifer and R. L. Carraway, “Modeling customer relationships as markov
chains,” Journal of Interactive Marketing,

[19] V. Singh, L. Freeman, B. Lepri, and A. Pentland, “Predicting spending behavior
using socio-mobile features,” in Social Computing (SocialCom), 2013 International
Conference on, 2013, pp. 174–179. doi: 10.1109/SocialCom.2013.33.

[20] S. Dash, “A comparative study of moving averages: simple, weighted and exponen-
tial,” Applied Technical Analysis, Tech. Rep., 2012. [Online]. Available: https://
www.tradestation.com/education/labs/analysis-concepts/a-comparative-

study-of-moving-averages (visited on 04/17/2014).

[21] J. Filliben et al., “Introduction to time series analysis,” in NIST/SEMTECH Hand-
book of Statistical Methods, National Institute of Standards and Technology, 2003.

[22] P. S. Kalekar, “Time series forecasting using holt-winters exponential smoothing,”
Kanwal Rekhi School of Information Technology, vol. 4329008, pp. 1–13, 2004.

[23] J. Williams, A. Jex, et al. (2011). Session hijacking attack, Open Web Application
Security Project (OWASP), [Online]. Available: https://www.owasp.org/index.
php/Session_hijacking_attack (visited on 04/22/2014).

[24] E. Butler, “Hey web 2.0: start protecting user privacy instead of pretending to,”
Presented at Toorcon 12 San Diego, 2010. [Online]. Available: http://codebutler.
github.io/firesheep/tc12/ (visited on 04/19/2014).

[25] ——, (2014). Codebutler/firesheep, GitHub, [Online]. Available: https://github.
com/codebutler/firesheep (visited on 04/22/2014).

[26] D. Walker-Morgan. (2012). Sniffer tool displays other people’s whatsapp mes-
sages: news and features, The H Security, [Online]. Available: http://www.h-
online.com/news/item/Sniffer-tool-displays-other-people-s-WhatsApp-

messages-1574382.html (visited on 04/21/2014).

76 of 96

http://stackoverflow.com/questions/7269668/is-there-an-api-to-get-bank-transaction-and-bank-balance
http://stackoverflow.com/questions/7269668/is-there-an-api-to-get-bank-transaction-and-bank-balance
http://www.apple.com/euro/itunes/charts/apps/top10appstorefinance.html
http://www.apple.com/euro/itunes/charts/apps/top10appstorefinance.html
http://www.spendeeapp.com
http://www.spendeeapp.com
http://www.bluetgs.com/Home.aspx
http://www.bluetgs.com/Home.aspx
http://dx.doi.org/10.1109/SocialCom.2013.33
https://www.tradestation.com/education/labs/analysis-concepts/a-comparative-study-of-moving-averages
https://www.tradestation.com/education/labs/analysis-concepts/a-comparative-study-of-moving-averages
https://www.tradestation.com/education/labs/analysis-concepts/a-comparative-study-of-moving-averages
https://www.owasp.org/index.php/Session_hijacking_attack
https://www.owasp.org/index.php/Session_hijacking_attack
http://codebutler.github.io/firesheep/tc12/
http://codebutler.github.io/firesheep/tc12/
https://github.com/codebutler/firesheep
https://github.com/codebutler/firesheep
http://www.h-online.com/news/item/Sniffer-tool-displays-other-people-s-WhatsApp-messages-1574382.html
http://www.h-online.com/news/item/Sniffer-tool-displays-other-people-s-WhatsApp-messages-1574382.html
http://www.h-online.com/news/item/Sniffer-tool-displays-other-people-s-WhatsApp-messages-1574382.html

REFERENCES REFERENCES

[27] K. Helkala and E. Snekkenes, “A method for ranking authentication products,” in
Proceedings of the Second International Symposium on Human Aspects of Infor-
mation Security & Assurance, 2008, isbn: 9781841021898.

[28] W. Burr, D. Dodson, E. Newton, R. Perlner, W. Polk, S. Gupta, and E. Nabbus,
“Electronic authentication guideline,” National Institute of Standards and Tech-
nology, 2013, Special Publication 800-63-2.

[29] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics for password
creation policies by attacking large sets of revealed passwords,” in Proceedings of
the 17th ACM Conference on Computer and Communications Security, ser. CCS
’10, Chicago, Illinois, USA: ACM, 2010, pp. 162–175, isbn: 978-1-4503-0245-6. doi:
10.1145/1866307.1866327. [Online]. Available: http://doi.acm.org/10.1145/
1866307.1866327.

[30] (2012). Linkedin passwords leaked by hackers, BBC News, [Online]. Available:
http://www.bbc.co.uk/news/technology-18338956 (visited on 04/19/2014).

[31] D. Chechik. (2013). Look what i found: moar pony! TrustWave Security Firm,
[Online]. Available: http://web.archive.org/web/20131208203540/http:

//blog.spiderlabs.com/2013/12/look- what- i- found- moar- pony.html

(visited on 04/22/2014).

[32] M. W. Jorgensen. (2012). Free rainbow tables - distributed rainbow table gen-
eration, Distributed Rainbow Table Project, [Online]. Available: https://www.
freerainbowtables.com/tables/ (visited on 04/22/2014).

[33] R. Morris and K. Thompson, “Password security: a case history,” Communications
of the ACM, vol. 22, no. 11, pp. 594–597, 1979.

[34] Quicken Support. (2010). Quicken interchange format (qif) files, [Online]. Avail-
able: http://web.archive.org/web/20100203121050/http://web.intuit.
com/support/quicken/docs/d_qif.html (visited on 04/10/2014).

[35] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and
reversals,” in Soviet physics doklady, vol. 10, 1966, p. 707.

[36] M. May, “Inaccessibility of captcha,” Alternatives to Visual Turing Tests on the
Web, W3C, Editor, W3C, 2005.

[37] S. Hegarty. (2012). The evolution of those annoying online security tests, BBC
News, [Online]. Available: http://www.bbc.co.uk/news/magazine-18367017
(visited on 04/20/2014).

[38] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-digit number
recognition from street view imagery using deep convolutional neural networks,”
CoRR, vol. abs/1312.6082, 2013.

[39] 9kw.eu. (2014). Captcha service for the user - captcha solver, [Online]. Available:
http://www.9kw.eu/index.html (visited on 04/22/2014).

77 of 96

http://dx.doi.org/10.1145/1866307.1866327
http://doi.acm.org/10.1145/1866307.1866327
http://doi.acm.org/10.1145/1866307.1866327
http://www.bbc.co.uk/news/technology-18338956
http://web.archive.org/web/20131208203540/http://blog.spiderlabs.com/2013/12/look-what-i-found-moar-pony.html
http://web.archive.org/web/20131208203540/http://blog.spiderlabs.com/2013/12/look-what-i-found-moar-pony.html
https://www.freerainbowtables.com/tables/
https://www.freerainbowtables.com/tables/
http://web.archive.org/web/20100203121050/http://web.intuit.com/support/quicken/docs/d_qif.html
http://web.archive.org/web/20100203121050/http://web.intuit.com/support/quicken/docs/d_qif.html
http://www.bbc.co.uk/news/magazine-18367017
http://www.9kw.eu/index.html

REFERENCES REFERENCES

[40] D. Danchev. (2014). Google’s recaptcha under automatic fire from a newly launched
recaptcha-solving/breaking service, Webroot Threat Blog, [Online]. Available: http:
//www.webroot.com/blog/2014/01/21/googles- recaptcha- automatic-

fire-newly-launched-recaptcha-solving-breaking-service/ (visited on
04/21/2014).

[41] I. Savinkin. (2013). 8 best captcha solvers, [Online]. Available: http://scraping.
pro/8-best-captcha-solving-services-and-tools/ (visited on 04/20/2014).

[42] B. Schneier, “Description of a new variable-length key, 64-bit block cipher (blow-
fish),” in Fast Software Encryption, Springer, 1994, pp. 191–204.

[43] National Institute Of Standards And Technology, “Announcing the advanced en-
cryption standard (aes),” 2001.

[44] R. M. Stair and G. W. Reynolds, Principles of Information Systems: a Managerial
Approach, 9th ed. South-Western, 2009, p. 245, isbn: 0324665288.

[45] C. Larman, Applying uml and patterns: an approach to object-oriented analysis
and design, 1997.

[46] Cake Software Foundation. (2014). Understanding model-view-controller, [Online].
Available: http://book.cakephp.org/2.0/en/cakephp-overview/understanding-
model-view-controller.html (visited on 04/27/2014).

[47] GitHub, Inc. (2014). Pez cuckow - github, [Online]. Available: https://github.
com/pezmc/ (visited on 04/25/2014).

[48] F. Potencier. (2009). Templating engines in php, [Online]. Available: http://

fabien.potencier.org/article/34/templating-engines-in-php (visited on
04/26/2014).

[49] W. Durand, M. J. Schmidt, R. Dupret, P. Borreli, et al. (2014). Propel, the blaz-
ing fast open-source php 5.4 orm, [Online]. Available: http://propelorm.org/
(visited on 04/27/2014).

[50] M. Otto and J. Thornton. (2014). Bootstrap, Twitter, [Online]. Available: http:
//getbootstrap.com/ (visited on 04/27/2014).

[51] D. KIZLER. (2013). Pros and cons of bootstrap, [Online]. Available: http://www.
hyperarts.com/blog/twitter-bootstrap-sucks-and-its-awesome/ (visited
on 04/26/2014).

[52] I. Carrico. (2013). You don’t need bootstrap, [Online]. Available: http://fourkitchens.
com/blog/2013/10/09/you-dont-need-bootstrap (visited on 04/26/2014).

[53] The jQuery Foundation. (2014). Jquery - write less do more, [Online]. Available:
http://jquery.com/ (visited on 04/27/2014).

[54] Stack Overflow Users. (2013). How to parse a ofx file in php? Stack Overflow,
[Online]. Available: http://stackoverflow.com/questions/15735330/how-to-
parse-a-ofx-version-1-0-2-file-in-php (visited on 04/28/2014).

78 of 96

http://www.webroot.com/blog/2014/01/21/googles-recaptcha-automatic-fire-newly-launched-recaptcha-solving-breaking-service/
http://www.webroot.com/blog/2014/01/21/googles-recaptcha-automatic-fire-newly-launched-recaptcha-solving-breaking-service/
http://www.webroot.com/blog/2014/01/21/googles-recaptcha-automatic-fire-newly-launched-recaptcha-solving-breaking-service/
http://scraping.pro/8-best-captcha-solving-services-and-tools/
http://scraping.pro/8-best-captcha-solving-services-and-tools/
http://book.cakephp.org/2.0/en/cakephp-overview/understanding-model-view-controller.html
http://book.cakephp.org/2.0/en/cakephp-overview/understanding-model-view-controller.html
https://github.com/pezmc/
https://github.com/pezmc/
http://fabien.potencier.org/article/34/templating-engines-in-php
http://fabien.potencier.org/article/34/templating-engines-in-php
http://propelorm.org/
http://getbootstrap.com/
http://getbootstrap.com/
http://www.hyperarts.com/blog/twitter-bootstrap-sucks-and-its-awesome/
http://www.hyperarts.com/blog/twitter-bootstrap-sucks-and-its-awesome/
http://fourkitchens.com/blog/2013/10/09/you-dont-need-bootstrap
http://fourkitchens.com/blog/2013/10/09/you-dont-need-bootstrap
http://jquery.com/
http://stackoverflow.com/questions/15735330/how-to-parse-a-ofx-version-1-0-2-file-in-php
http://stackoverflow.com/questions/15735330/how-to-parse-a-ofx-version-1-0-2-file-in-php

REFERENCES REFERENCES

[55] S. Hanselman. (2006). Postprocessing autoclosed sgml tags with the sgmlreader,
[Online]. Available: http://www.hanselman.com/blog/Postprocessing-Auto-
Closed-SGML-Tags-With-The-SGML-Reader.aspx (visited on 04/28/2014).

[56] GNU Project. (2007). The gnu general public license v3.0, Free Software Founda-
tion, [Online]. Available: http://www.gnu.org/licenses/gpl.html (visited on
04/25/2014).

[57] Z. Huber, H. Perrin, et al. (2014). Pnotify, SciActive, [Online]. Available: http:
//sciactive.github.io/pnotify/ (visited on 04/24/2014).

[58] MySQL. (2014). Natural language full-text searches, Oracle, [Online]. Available:
https://dev.mysql.com/doc/refman/5.0/en/fulltext-natural-language.

html (visited on 04/25/2014).

[59] T. Unger, M. Mulazzani, D. Fruhwirt, M. Huber, S. Schrittwieser, and E. Weippl,
“Shpf: enhancing http(s) session security with browser fingerprinting,” in Avail-
ability, Reliability and Security (ARES), 2013 Eighth International Conference on,
2013, pp. 255–261. doi: 10.1109/ARES.2013.33.

[60] Google. (2014). Update google chrome, [Online]. Available: https://support.
google.com/chrome/answer/95414 (visited on 04/26/2014).

[61] A. Wyman et al. (2014). Update firefox to the latest version, Mozilla, [Online].
Available: https : / / support . mozilla . org / en - US / kb / update - firefox -

latest-version (visited on 04/27/2014).

[62] The PHP Group, Ed., Session Functions, session unset. [Online]. Available: http:
//www.php.net/manual/en/function.session-unset.php (visited on 04/27/2014).

[63] The PHP Group, Ed., Session Functions, session destroy. [Online]. Available:
http://www.php.net/manual/en/function.session-destroy.php (visited
on 04/27/2014).

[64] J. Atwood. (2013). The definitive guide to form based website authentication, Stack
Overflow, [Online]. Available: http://stackoverflow.com/questions/549/

the-definitive-guide-to-form-based-website-authentication (visited on
04/27/2014).

[65] T. Preston-Werner et al. (2014). Gravatar - globally recognized avatars, [Online].
Available: https://en.gravatar.com/ (visited on 04/27/2014).

[66] J. Steimle. (2013). Why your business needs a responsive website before 2014,
[Online]. Available: http://www.forbes.com/sites/joshsteimle/2013/11/08/
why-your-business-needs-a-responsive-website-before-2014/ (visited on
04/06/2014).

[67] J. Sauro, “The standardized universal percentile rank questionnaire (supr-q),”
2011. [Online]. Available: http://www.suprq.com/ (visited on 04/28/2014).

[68] J. Sauro and J. S. Dumas, “Comparison of three one-question, post-task usability
questionnaires,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM, 2009, pp. 1599–1608.

79 of 96

http://www.hanselman.com/blog/Postprocessing-Auto-Closed-SGML-Tags-With-The-SGML-Reader.aspx
http://www.hanselman.com/blog/Postprocessing-Auto-Closed-SGML-Tags-With-The-SGML-Reader.aspx
http://www.gnu.org/licenses/gpl.html
http://sciactive.github.io/pnotify/
http://sciactive.github.io/pnotify/
https://dev.mysql.com/doc/refman/5.0/en/fulltext-natural-language.html
https://dev.mysql.com/doc/refman/5.0/en/fulltext-natural-language.html
http://dx.doi.org/10.1109/ARES.2013.33
https://support.google.com/chrome/answer/95414
https://support.google.com/chrome/answer/95414
https://support.mozilla.org/en-US/kb/update-firefox-latest-version
https://support.mozilla.org/en-US/kb/update-firefox-latest-version
http://www.php.net/manual/en/function.session-unset.php
http://www.php.net/manual/en/function.session-unset.php
http://www.php.net/manual/en/function.session-destroy.php
http://stackoverflow.com/questions/549/the-definitive-guide-to-form-based-website-authentication
http://stackoverflow.com/questions/549/the-definitive-guide-to-form-based-website-authentication
https://en.gravatar.com/
http://www.forbes.com/sites/joshsteimle/2013/11/08/why-your-business-needs-a-responsive-website-before-2014/
http://www.forbes.com/sites/joshsteimle/2013/11/08/why-your-business-needs-a-responsive-website-before-2014/
http://www.suprq.com/

REFERENCES REFERENCES

[69] J. Sauro and J. R. Lewis, “Correlations among prototypical usability metrics:
evidence for the construct of usability,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM, 2009, pp. 1609–1618.

80 of 96

Appendices

81

Appendix A

Survey

Informal survey of 12 CS students in the third year lab.
Questions:

1. Do you currently make a budget?

2. Do you stick to that budget?

3. Do you find your budget has a ‘positive’ impact?

Table A.1: Survey Results

Question
Answer 1. 2. 3.

yes 5 1 3
no 7 4 4
n/a 0 7 5

82

Appendix B

Hashing Test

Implemented in PHP, the test was run on a computer with a 2.7 Ghz Intel Core i7,
16Gb of 1600Mhz DDR3 RAM and PHP CLI 5.5.3.

<?php

$timeTarget = 1;

ini_set('memory_limit ', '-1');

$strings = array();

for($i = 0; $i < 3000000; $i++) {

$strings[$i] = randomString (16);

}

$hashingFunctions = array('MD5', 'SHA1', 'BCRYPT ');

foreach($hashingFunctions as $hash) {

for($i = 0; $i < 10; $i++) {

$start = microtime(true);

$count = 0;

do {

$count ++;

if($hash == $hashingFunctions [0])
md5($strings[$count]);

elseif($hash == $hashingFunctions [1])
sha1($strings[$count]);

elseif($hash == $hashingFunctions [2])
password_hash($strings[$count], PASSWORD_BCRYPT);

else

echo "ERROR: Unknown function";

$end = microtime(true);

} while (($end - $start) < $timeTarget);
echo "$hash\t$count\n";

}

}

function randomString($length = 10) {

83

APPENDIX B. HASHING TEST

$characters = '0123456789
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ ';

$randomString = '';
for ($i = 0; $i < $length; $i++) {

$randomString .= $characters[rand(0, strlen($characters) - 1)];

}

return $randomString;
}

84 of 96

Appendix C

Database Schema

85

APPENDIX C. DATABASE SCHEMA

Figure C.1: Full database schema for the project

86 of 96

Appendix D

External Libraries

A full list of libraries and frameworks used by pegFinance are included below, in-
cludng licensing information.

D.1 Back End

pegFramework

MVC framework that pegFinance is based around.
Licence - self developed, open-source under the MIT license

Propel

ORM library for PHP, that converts schemas based in XML into PHP objects and
provides database connectivity. The database objects found within pegFinance are de-
fined in, and generated by Propel.

License - open-source project released under the MIT license

Less

CSS pre-processor that extends the CSS, adding additional features and functionality
such as inheritance. ‘.Less’ files are compiled to ‘.css’ using Less. The CSS for pegFinance
is written in and compiled with Less.

License - open-source under the Apache 2 License

D.2 Front End

jQuery

A ‘feature-rich JavaScript library’, that provides element selection and enabled HTML
traversal and manipulation, as well as providing an easy API for Ajax requests. Used
throughout the site for frontend effects, and used heavily in the suggestion wizard.

License - open-source, released under the MIT license

87

D.2. FRONT END APPENDIX D. EXTERNAL LIBRARIES

Bootstrap

Front-end framework for faster web development that provides a large collection of
predefined CSS classes and elements for use on the page. Used for the UI of pegFinance.

License - MIT license and copyright 2014 Twitter

Inspiritas

A theme for bootstrap, that defines colors and additional elements for use on the
page. A heavily modified version is used for the UI of pegFinance.

Licence - Open-source, Apache License

StrongPass.js

jQuery Password Strength plugin for Twitter Bootstrap. Modified version used to
provide a client side indication the password entropy calculation during signup.

License - Dual, under the MIT and GPL.

Pines Notify

jQuery Pines Notify Plugin. Used to provide event notification in the user interface to
indicate events. pNotify is used in the suggestion wizard and when mapping a reference
to a transactor to update the user on the status of the request

Licence - Triple licensed under the GPL, LGPL, and MPL.

UserVoice JavaScript SDK

SDK for access to a user opinion platform, to help provide insight into the userbase
and receive feedback. Deployed throughout the application so users can provide feedback
when using the application, including an optional screen capture.

Licence - Commercial SDK provided by UserVoice

Chosen

Javascript library used to make ‘long, unwieldy select boxes much more user-friendly’.
Used to improve user experience when categorising transactors, including search.

Licence - MIT license

Highcharts

Highcharts is a charting library written in HTML5/JavaScript. It’s used to draw the
pie charts on the home page and charts throguhout the application.

Licence - Creative Commons Attribution-NonCommercial 3.0 License.

88 of 96

D.2. FRONT END APPENDIX D. EXTERNAL LIBRARIES

Base Admin

Admin theme, used on the non user facing admin pages.
License - Commercial Single Use license

89 of 96

Appendix E

PHP Code

Several pieces of functionality implemented in PHP were referenced throughout the
report. Samples of code that were deemed too long or inappropriate to show in-line are
listed here.

90

APPENDIX E. PHP CODE

/**

* Checks for an existing transactor , creating a new one if not

* @var $name The raw transactor string

*/

public function setTransactor($name) {

// Trim off extra whitespace

$name = trim($name);
$this ->setRawTransactor($name);

// Tidy the name

$name = preg_replace('/\s_/', ' ', $name);
$name = preg_replace('/\s+/', ' ', $name);
$name = preg_replace('#[^\w\s/\\ -.]#', '', $name);
$name = trim($name , ' -./\ ');

// If last 2+ characters are numbers

if(preg_match('#(?:[A-z]|\s){2 ,}(?:[\s]+)?(\d{2,})$#', $name , $matches ,
PREG_OFFSET_CAPTURE)) {

if($matches [1][0]) {

$this ->setNumber($matches [1][0]);
$name = trim(substr($name , 0, $matches [1][1]));

}

}

// Existing global transactor mapping?

$globalTransactorMap = GlobalTransactorMappingQuery ::

findOneByTransactorName($name);
$foundGlobalMap = (boolean) $globalTransactorMap;
if($foundGlobalMap) {

$this ->setGlobalTransactorMapping($globalTransactorMap);
}

// Create a new user mapping and persist it

$currentUser = $this ->getUserSession ()->getUser ();
$userMap = UserTransactorMappingQuery :: findOneByTransactorNameAndUser(

$name , $currentUser);

if(empty($userMap) && !empty($name) && !$foundGlobalMap) {

$userMap = new UserTransactorMapping ();

$userMap ->setName($name);
$userMap ->setUser($currentUser);
$userMap ->save();

}

if($userMap) $this ->setUserTransactorMapping($userMap);
}

Figure E.1: PHP Transaction->setTransactor($name) implementation

91 of 96

APPENDIX E. PHP CODE

if($dmy && $mdy || !$dmy && !$mdy)
// ... prompt the user

else

// ... continue conversion using the detected month format

Figure E.2: Evaluating the results of the month format detection

public function getThrottlingWaitSeconds () {

$throttleSteps = array (60 => 1, 120 => 2, 240 => 3);

$throttlePeriodMinutes = $this ->getConfig ()->getThrottlePeriod ();

$mostRecent = FailedLoginAttemptPeer :: GetMostRecent ();

if($mostRecent) {

$mostRecentLoginTimestamp = $mostRecent ->getUpdatedAt('U');
$attemptCount = FailedLoginAttemptPeer :: GetCountInLastMinutes(

$throttlePeriodMinutes);

// ensure the largest is considered first

krsort($throttleSteps);
foreach($throttleSteps as $attempts => $wait) {

if($attemptCount > $attempts) {

return time() - $mostRecentLoginTimestamp - $wait;
}

}

}

return 0;

}

Figure E.3: Calculating wait time following a failed login attempt

92 of 96

Appendix F

Suggestion Wizard API

The suggestion wizard is powered by AJAX, which makes JSON requests to a REST-
ful API on the backend. The figures in the section outline an example set of communica-
tion with the API, requesting the list of suggestions (Fig. F.4), mapping a reference to
a transactor (Fig. F.2) and creating a new transactor (Fig. F.3), including an example
response from the server following a POST request (Fig. F.1).

{
"status": 0,

"result": "Successfully mapped sainsburys to Sainsbury 's (Global)."

}

Figure F.1: Response from API following a successful map or create

93

APPENDIX F. SUGGESTION WIZARD API

{
"from": {

"userMappingID": 443

},
"to": {

"globalMappingID": 12

}
}

Figure F.2: POST request sent to
/ajax/transactor/map

{
"name": "Tesco",

"category": 34,

"subcategory": null,

"from": {
"userMappingID": 464

}
}

Figure F.3: POST request sent to
/ajax/transactor/create

{"status":0,
"result":[

{ "mapping":{
"id":449,

"name":"edf energy",

"transactorName":"Edf Energy"

},
"exampleTransactions":[

{ "id":1552,

"value":"-169.00",

"date":"2014-03-24",

"memo":null

}
... etc

],

"suggestions": [

"globalMappings":[

{ "id":134,

"name":"e.on energy",

"transactorName":"E.ON"

},
{ "id":222,

"name":"edf energy -dom",

"transactorName":"EDF Energy"

},
... etc

],

"globalTransactors":[{
"id":149,

"name":"EDF Energy"

}]
]

},
... etc

]

}

Figure F.4: GET request sent to/ajax/transactor/suggestions
,

94 of 96

Appendix G

Questionnaire

Part 1

Answers on a 5 point scale, from strongly disagree to strongly agree. The questions
were adapted from The Standardized Universal Percentile Rank Questionnaire [67].

1. I am able to find what I need quickly.

2. I enjoy using the website.

3. It is easy to navigate.

4. This website keeps the promises it makes to me.

5. I feel comfortable using the site.

6. I can count on the information provided on the site.

7. I feel confident uploading my statements to this website.

8. The information on this website is valuable.

9. If the website were completed, I would be likely to recommend this website to a
friend or colleague.

10. If the website were completed, I would visit this site in the future.

11. I find the website to be attractive.

12. The website has a clean and simple presentation.

Part 2

Answers on a 7 point scale from very difficult to very easy, each question was paired
with a free text field where users could provide additional information why. The questions
were designed following the Single Ease Question format [68].
How easy or difficult did you find it to:

95

APPENDIX G. QUESTIONNAIRE

1. Download your statement from your bank? Why?

2. Upload your statement? Why?

3. View and understand your statement (on pegFinance)? Why?

4. View you monthly predictions? Why?

5. Overall, use the website? Why?

Part 3

The final part of the questionnaire was used to identify features of the the website
that users favoured and to allow for feature requests, all questions were answered in free
text fields.

1. What single feature of the website would you change?

2. Which feature(s) do you find the most useful?

3. What feature(s) would you like to see added?

4. Any other comments?

96 of 96

	Introduction
	Motivation
	Aims and Objectives
	Statement Management
	Prediction
	Security

	Overview of Report

	Background
	Statement Management
	Lloyds Money Manager
	Mint.com
	Mobile Apps

	Prediction
	Security
	Account Hijacking
	Password Security
	Database Storage

	Design
	Statement Management
	Upload
	Named Entity Resolution
	Suggestions

	Prediction
	Markov Chain Models
	Weighted Arithmetic Mean
	Five Model System
	Confidence

	Security Considerations
	Account Hijacking
	Password Security
	Database Storage
	Other

	Technical Design
	Language Choice
	Design Patterns
	Architecture
	Project Management

	Implementation
	Key Libraries
	Server Side
	Client Side

	Statement Management
	Upload
	Named Entity Resolution
	Suggestion Wizard

	Prediction
	Security
	Account Hijacking
	Brute Force Attacks

	Results
	System Walkthrough
	Statement Upload

	Suggestion Wizard
	Transaction Overview
	Viewing Statements
	Responsive Design

	Testing and Evaluation
	During Development
	Acceptance Testing
	Unit Testing

	After Development
	Statement Management
	Prediction
	Security

	Conclusions
	Limitations
	Further research
	Model Selection
	Alternative Forecasting Techniques
	Learning the Scaling Parameters

	Appendix Survey
	Appendix Hashing Test
	Appendix Database Schema
	Appendix External Libraries
	Back End
	Front End

	Appendix PHP Code
	Appendix Suggestion Wizard API
	Appendix Questionnaire

